
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARL

Why walk when you can take the tube?

LUCAS DIXON
University of Edinburgh

PETER HANCOCK and CONOR MCBRIDE
University of Nottingham

Abstract

Mornington Crescent

1 Introduction

The purpose of this paper is not only self-citation (McBride, 2001; McBride &
Paterson, 2006), but also to write a nice wee program.

2 Traversable Polynomial Functors

We’re going to work generically with recursive datatypes representing terms in
some syntax. The syntax will be determined by a functor f :: ∗ → ∗, representing
the choice of expression forms. The parameter is used to indicate the places for
subterms within terms, and the resulting type of terms is given by taking the least
fixpoint of f , so that the parameter gets instantiated with the very type of terms
we are defining.

newtype µ f = In (f (µ f ))

To work with data in this style, we’ll need a kit for building functors. Let’s start
with the polynomials, given as follows—in each definition, x represents the type of
subterms:

newtype Id x = Id x -- ‘identity’ for a subterm
newtype C c x = C c -- ‘constant’ for non-recursive data of type c
data (p ¢ q) x = InL (p x ) | InR (q x ) -- ‘sum’ for choice
data (p £ q) x = p x £ q x -- ‘product’ for pairing

For a simple example, consider the syntax of expressions with numeric constants
and addition, directly defined thus:

data Expr = Num Int | Add Expr Expr



2 Lucas Dixon, Peter Hancock and Conor McBride

We can build this from our kit by describing the basic choice of expression forms—a
non-recursive Int or pair of subterms:

type ExprF = C Int ¢ Id £ Id

Now, the resulting fixpoint, µ ExprF, is isomorphic to Expr, and we can define the
analogues of Expr’s constructors.

num :: Int → µ ExprF

num i = In (InL (C i))

add :: µ ExprF → µ ExprF → µ ExprF

add e1 e2 = In (InR (Id e1 £ Id e2))

This method of constructing datatypes as fixpoints of functors is entirely standard:
a comprehensive account can be found in Bird and de Moor’s Algebra of Program-
ming (Bird & de Moor, 1997). The point of casting datatypes in this uniform
mould is to capture patterns of operations over a class of datatypes, once and for
all. Paradigmatically, for each functor f , µ f has an iteration operator, or catamor-
phism, which explains how to compute recursively over whole terms, by applying at
each node an algebra φ to compute the output for a term, given the outputs from
its subterms.

cata :: Functor f ⇒ (f t → t) → µ f → t
cata φ (In fm) = φ (fmap (cata φ) fm)

For example, we can write an evaluator as a catamorphism whose algebra explains
how each of the expression forms operates on values:

eval :: µ ExprF → Int

eval = cata φ where

φ :: ExprF Int → Int

φ (In (InL (C i))) = i
φ (In (InR (Id v1 £ Id v2))) = v1 + v2

Of course, we must show that the polynomial type constructors are indeed func-
torial. We do this by writing four instances of the Functor class, showing that Id

and C c are functors, whilst · ¢ · and · £ · preserve functoriality. Recall that a
Functor in Haskell is just a type constructor f which supports the overloaded ‘map’
operation, fmap :: (s → t) → f s → f t .

instance Functor Id where

fmap f (Id x ) = Id (f x )

instance Functor (C c) where

fmap f (C c) = (C c)

instance (Functor p,Functor q) ⇒ Functor (p ¢ q) where

fmap f (InL px ) = InL (fmap f px )
fmap f (InR qx ) = InR (fmap f qx )

instance (Functor p,Functor q) ⇒ Functor (p £ q) where

fmap f (px £ qx ) = fmap f px £ fmap f qx



Functional pearl 3

But we can have more than that! In (McBride & Paterson, 2006), McBride and
Paterson introduced the notion of a Traversable functor, delivering a version of
‘map’ which performs an effectful computation for each element, combining the
effects:

class Functor f ⇒ Traversable f where

traverse :: Applicative a ⇒ (s → a t) → f s → a (f t)

Recall that an Applicative functor has the following operations (hence any Monad

can be made Applicative):

class Functor a ⇒ Applicative a where

pure :: x → a x -- values become effectless a-computations
(~) :: a (s → t) → a s → a t -- a-application, combining effects

Implementing traverse is just like implementing fmap, except that we use pure to
lift the constructors and we replace the ordinary application with a-application.
We think of working in this lifted way as ‘programming in the idiom of a’.

instance Traversable Id where

traverse f (Id x ) = pure Id ~ f x

instance Traversable (C c) where

traverse f (C c) = pure (C c)

instance (Traversable p,Traversable q) ⇒ Traversable (p ¢ q) where

traverse f (InL px ) = pure InL ~ traverse f px
traverse f (InR qx ) = pure InR ~ traverse f qx

instance (Traversable p,Traversable q) ⇒ Traversable (p £ q) where

traverse f (px £ qx ) = pure (£) ~ traverse f px ~ traverse f qx

We shall be making particular use of traversability in the Maybe idiom, lifting a
failure-prone function f on elements to a traversal which succeeds only if f succeeds
at every element.

[lookup example.] [traverse with Maybe is strict, so doesn’t work on streams.]
Remark. Every Traversable functor must be an instance of Functor. We can easily

implement fmap by using traverse with a = Id.
[You don’t get closure under functoriality from closure under traversability.] [A

pair of streams is still functorial.]

2.1 Composition

newtype (p � q) x = Comp (p (q x ))

instance (Traversable p,Traversable q) ⇒ Traversable (p � q) where

traverse f (Comp xqp) = pure Comp ~ traverse (traverse f ) xqp

3 Free Monads

The free monad construction lifts any functorial signature p of operations to a
syntax of expressions constructed from those operations and from free variables x .



4 Lucas Dixon, Peter Hancock and Conor McBride

data Term p x = Con (p (Term p x )) | Var x

The return of the Monad embeds free variables into the syntax. The >>= is exactly
the simultaneous substitution operator. Below, f takes variables in x to expressions
in Term p y ; (>>=f ) delivers the corresponding action on expressions in Term p x .

instance Functor p ⇒ Monad (Term p) where

return = Var

Var x >>= f = f x
Con tp >>= f = Con (fmap (>>=f ) tp)

Correspondingly, Term p is also Applicative and a Functor. Moreover, if p is Traversable,
then so is Term p.

instance Traversable p ⇒ Traversable (Term p) where

traverse f (Var x ) = pure Var ~ f x
traverse f (Con tp) = pure Con ~ traverse (traverse f ) tp

By way of example, we choose a simple signature with constant integer values and
a binary operator1. As one might expect, · ¢ · delivers choice and · £ · delivers
pairing. Meanwhile Id marks the spot for each subexpression.

type Sig = C Int ¢ Id £ Id

Now we can implement the constructors we first thought of, just by plugging Con

together with the constructors of the polynommial functors in Sig.
[Relate this to the direct presentation of expressions.]

val :: Int → Term Sig x
val i = Con (InL (C i))

add :: Term Sig x → Term Sig x → Term Sig x
add x y = Con (InR (Id x £ Id y))

4 The ∅ Type

We can recover the idea of a closed term by introducing the ∅ type, beloved of
logicians but sadly too often spurned by programmers.

data ∅
Bona fide elements of ∅ are hard to come by, so we may safely offer to exchange them
for anything you might care to want: as you will be paying with bogus currency,
you cannot object to our shoddy merchandise.

naughtE :: ∅ → a
naughtE = ⊥

More crucially, naughtE lifts functorially. The type f ∅ represents the ‘base cases’ of
f which exist uniformly regardless of f ’s argument. For example, [ ] :: [∅], Nothing ::

1 Hutton’s Razor strikes again!



Functional pearl 5

Maybe ∅ and C 3 :: Sig ∅. We can map these terms into any f a, just by turning all
the elements of ∅ we encounter into elements of a.

inflate :: Functor f ⇒ f ∅ → f a
inflate = unsafeCoerce # -- fmap naughtE – could be unsafeCoerce

Thus equipped, we may take Term p ∅ to give us the closed terms over signature p.
Modulo the usual fuss about bottoms, Term p ∅ is just the usual recursive datatype
given by taking the fixpoint of p. The general purpose ‘evaluator’ for closed terms
is just the usual notion of catamorphism.

fcata :: (Functor p) ⇒ (p v → v) → Term p ∅ → v
fcata operate (Var nonsense) = naughtE nonsense
fcata operate (Con expression) = operate (fmap (fcata operate) expression)

Following our running example, we may take

sigOps :: Sig Int → Int

sigOps (InL (C i)) = i
sigOps (InR (Id x £ Id y)) = x + y

and now

cata sigOps (add (val 2) (val 2)) = 4

We shall also make considerable use of ∅ in a moment, when we start making holes
in polynomials.

5 Differentiating Polynomials

[Need the usual pictures, and some examples.]

class (Traversable p, Traversable p′) ⇒ ∂p 7→ p′ | p → p′ where

(<·) :: p′ x → x → p x
down :: p x → p (p′ x , x )

downright fmap snd (down xf ) = xf
downhome fmap (uncurry (<·)) (down xf ) = fmap (const xf ) xf

instance ∂(C c) 7→ C ∅ where

C z <· = naughtE z
down (C c) = C c

instance ∂Id 7→ C () where

C () <· x = Id x
down (Id x ) = Id (C (), x )



6 Lucas Dixon, Peter Hancock and Conor McBride

instance (∂p 7→ p′, ∂q 7→ q ′) ⇒ ∂(p ¢ q) 7→ p′ ¢ q ′ where

InL p′<· x = InL (p′<· x )
InR q ′<· x = InR (q ′<· x )
down (InL p) = InL (fmap (InL× id) (down p))
down (InR q) = InR (fmap (InR× id) (down q))

instance (∂p 7→ p′, ∂q 7→ q ′) ⇒ ∂(p £ q) 7→ p′ £ q ¢ p £ q ′ where

InL (p′ £ q)<· x = (p′<· x ) £ q
InR (p £ q ′) <· x = p £ (q ′<· x )
down (p £ q) =

fmap ((InL · (£q))× id) (down p) £ fmap ((InR · (p£))× id) (down q)

instance (∂p 7→ p′, ∂q 7→ q ′) ⇒ ∂(p � q) 7→ (p′ � q) £ q ′ where

(Comp p′ £ q ′) <· x = Comp (p′<· q ′<· x )
down (Comp xqp) = Comp (fmap outer (down xqp)) where

outer (p′, xq) = fmap inner (down xq) where

inner (q ′, x ) = (Comp p′ £ q ′, x )

6 Differentiating Free Monads

A one-hole context in the syntax of Terms generated by the free monad construc-
tion is just a sequence of one-hole contexts for subterms in terms, as given by
differentiating the signature functor.

newtype ∂p 7→ p′ ⇒ Tube p p′ x = Tube [p′ (Term p x )]

Tubes are Traversable Functors. They also inherit a Monoid structure from their un-
derlying representation of sequences. Exactly which sequence structure you should
use depends on the operations you need to support. As in (McBride, 2001), we are
just using good old [ ] for pedagogical simplicity. At the time, Ralf Hinze, Johan
Jeuring and Andres Löh pointed out (2004), this choice does not yield constant-
time navigation operations in the style of Huet’s ‘zippers’ (1997), and I am sure
they would not forgive us this time if we failed to mention that replacing [ ] by
‘snoc-lists’ which grow on the right restores this facility.

Let us give an interface to contexts. We shall need the Monoid structure:

instance ∂p 7→ p′ ⇒ Monoid (Tube p p′ x ) where

ε = Tube [ ]
ctxt ⊕ Tube [ ] = ctxt
Tube ds ⊕ Tube ds ′ = Tube (ds ++ ds ′)

We may construct a one-step context for Term p from a one-hole context for sub-
terms in a p.

step :: ∂p 7→ p′ ⇒ p′ (Term p x ) → Tube p p′ x
step d = Tube [d ]

Plugging a Term into a Tube just iterates <· for p.



Functional pearl 7

(<<·) :: ∂p 7→ p′ ⇒ Tube p p′ x → Term p x → Term p x
Tube [ ] <<· t = t
Tube (d : ds)<<· t = Con (d <·Tube ds <<· t)

Moreover, anyplace you can plug a subterm is certainly a place you can plug a
variable, and vice versa. We shall also have

instance ∂p 7→ p′ ⇒ ∂(Term p) 7→ Tube p p′ where

ctxt <· x = ctxt <<·Var x
down (Var x ) = Var (ε, x )
down (Con tp) = Con (fmap outer (down tp)) where

outer (p′, t) = fmap inner (down t) where

inner (ctxt , x ) = (step p′ ⊕ ctxt , x )

7 Going Underground

data ∂p 7→ p′ ⇒ Underground p p′ x
= Ground (Term p ∅)
| Tube p p′ ∅ :−<:Node p p′ x

data ∂p 7→ p′ ⇒ Node p p′ x
= Terminus x
| Junction (p (Underground p p′ x ))

var :: ∂p 7→ p′ ⇒ x → Underground p p′ x
var x = ε :−<:Terminus x

con :: ∂p 7→ p′ ⇒ p (Underground p p′ x ) → Underground p p′ x
con psx = case traverse compressed psx of

Just pt0 → Ground (Con pt0 )
Nothing → case foldMap tubing (down psx ) of

Just sx → sx
Nothing → ε :−<: Junction psx

where

compressed :: ∂p 7→ p′ ⇒ Underground p p′ x → Maybe (Term p ∅)
compressed (Ground pt0 ) = Just pt0
compressed = Nothing

tubing (p′sx , bone :−<:node) = case traverse compressed p′sx of

Just p′t0 → Just (step p′t0 ⊕ bone :−<:node)
Nothing → Nothing

tubing = Nothing



8 Lucas Dixon, Peter Hancock and Conor McBride

underground :: ∂p 7→ p′ ⇒ Underground p p′ x → (x → t) → (p (Underground p p′ x ) → t) → t
underground (Ground (Con pt0 )) v c = c (fmap Ground pt0 )
underground (Tube [ ] :−<: Terminus x ) v c = v x
underground (Tube [ ] :−<: Junction psx ) v c = c psx
underground (Tube (p′t0 : tube) :−<: station) v c =

c (fmap Ground p′t0 <·(Tube tube :−<: station))

tunnel :: ∂p 7→ p′ ⇒ Term p x → Underground p p′ x
tunnel (Var x ) = var x
tunnel (Con ptx ) = con (fmap tunnel ptx )

untunnel :: ∂p 7→ p′ ⇒ Underground p p′ x → Term p x
untunnel sx = underground sx

(λ {-var -} x → Var x )
(λ {-con -} psx → Con (fmap untunnel psx ))

(−<) :: ∂p 7→ p′ ⇒ Tube p p′ ∅ → Underground p p′ x → Underground p p′ x
tube −<Ground pt0 = Ground (tube <<· pt0 )
tube0−< tube1 :−<:node = tube0 ⊕ tube1 :−<:node

instance ∂p 7→ p′ ⇒ Monad (Underground p p′) where

return = var

Ground pt0 >>= σ = Ground pt0
(tube :−<: Junction psx ) >>= σ = tube −< con (fmap (>>=σ) psx )
(tube :−<: Terminus x ) >>= σ = tube −<σ x

References

Bird, Richard, & de Moor, Oege. (1997). Algebra of Programming. Prentice Hall.

Hinze, Ralf, Jeuring, Johan, & Löh, Andres. (2004). Type-indexed data types. Science of
computer programmming, 51, 117–151.

Huet, Gérard. (1997). The Zipper. Journal of Functional Programming, 7(5), 549–554.

McBride, Conor. (2001). The Derivative of a Regular Type is its Type of One-Hole Con-
texts. Available at http://www.cs.nott.ac.uk/∼ctm/diff.pdf.

McBride, Conor, & Paterson, Ross. (2006). Applicative programming with effects. Journal
of Functional Programming. to appear.


