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Abstract

Observational Type Theory (OTT) combines benefi-
cial aspects of Intensional and Extensional Type Theory
(ITT/ETT). It separates definitional equality, decidable as in
ITT, and a substitutive propositional equality, capturing ex-
tensional equality of functions, as in ETT. Moreover, canon-
icity holds: any closed term is definitionally reducible to a
canonical value.

Building on previous work by each author, this article
reports substantial progress in the form of a simplified the-
ory with a straightforward syntactic presentation, which we
have implemented.

As well as simplifying reasoning about functions, OTT
offers potential foundational benefits, e.g. it gives rise to a
closed type theory encoding inductive datatypes.

1. Introduction

We introduce Observational Type Theory, a type the-
ory in the tradition of Per Martin-Löf [8, 11], which com-
bines beneficial aspects of Intensional and Extensional
Type Theory. Like in Intensional Type Theory reduction
is always terminating, and definitional equality and type-
checking are decidable. Like Extensional Type Theory,
propositional equality is extensional, i.e. two functions are
equal, if there are equal pointwise or to put it differently, if
all observations about them agree. At the same time propo-
sitional equality is substitutive, i.e. we can explicitly co-
erce between types which contain observationally equiva-
lent subterms. This is achieved without affecting the com-
putational behaviour of Type Theory, i.e. canonicity holds:
any closed term is definitionally reducible to a canonical
value.

We have implemented Observational Type Theory as a
part of the forthcoming new release of Epigram [10], a de-
pendently typed programming language and proof system.
Indeed, in some respects the implementation goes beyond
what we can currently justify, hence the word towards in the

title. We will discuss these extensions in section 5. Other
extensions clearly suggest themselves, e.g. the addition of
quotient types.

Intensional Type Theory which is the basis of most im-
plementations of Type Theory, e.g. Coq, LEGO, ALF and
the first release of Epigram, supports reasoning about data,
like the natural numbers, which are defined by the way
inhabitants are constructed, but it fails to take proper ac-
count of codata, like functions or coinductive types (e.g.
streams), which can only be understood by the way their
inhabitants can be used.

Observational reasoning can be simulated in Intensional
Type Theory by the use of setoids, i.e. types with an explicit
equivalence relation. However, using setoids complicates
the formalisation of mathematical theories because equality
is not automatically substitutive. Additional complications
arise if a setoid depends on a setoid, this arises for example
in the formalisation of category theory [7], where the setoid
of homsets depends on the setoid of objects1. Potentially
more important than the formalisation of mathematical the-
ories is the development of correct software for communi-
catin systems, which typically exhibit infinite behaviour and
hence demand observational reasoning.

Why not Extensional Type Theory? Extensional Type
Theory avoids all the shortcomings of Intensional Type
Theory discussed above and has been implemented in
NuPRL [3]. In Extensional Type Theory definitional equal-
ity and propositional equality are identified and as a con-
sequence a term does not contain enough information for
typechecking. This can be adressed by storing a derivation
instead of only the term. However, computation cannot be
guaranteed to terminate in the context of possibly incon-
sistent assumptions and hence we cannot trust the system
to execute computations automatically—this is an essential
advantage of Intensional Type Theory.

Observational Type Theory combines the advantages of
both approaches. We show as an example that, as in Ex-

1Current formalisations avoid this problem by viewing objects as a type
not a setoid. However, this makes it difficult to faithfully represent con-
structions like arrow categories which turn morphisms into objects.



tensional Type Theory, we are able to code inductive types,
like the natural numbers, using W-types and we can derive
the associated induction principle. Using the framework of
containers [1] we can implement any strictly positive in-
ductive or coinductive type in a closed Observational Type
Theory with W-types, this can also be extended to induc-
tive families. The fact that we can, in principle, reduce any
feature of our Type Theory to a closed core theory has im-
portant pragmatic advantages: we can keep the trusted code
base small.

Related work

Martin Hofmann [5] showed that that Extensional Type
Theory is a conservative extension of Intensional Type The-
ory augmented by two extensionality axioms, this has been
extended and simplified in the context of Coq [12] using
heterogeneous equality [9], which also plays an important
role in the construction presented here. However, adding
axioms destroys the computational properties of Intensional
Type Theory, in particular we lose canonicity. The first au-
thor showed [2] that we can have a decidable Type Theory
with extensional propositional equality and canonicity by a
model construction using an Intensional Type Theory with
a proof-irrelevant universe of propositions.

Results

• In section 2 we give a syntactic presentation of proof-
relevant Observational Type Theory. Such a pre-
sentation is absent from [2] which introduces proof-
irrelevant OTT only by a model construction.

• In section 3 we justify proof-relevant OTT by a syntac-
tic translation. While this is similar to the model con-
struction in [2], the presentation is dramatically sim-
plified by using heterogeneous equality [9].

• The translation presented in section 3 translates into
a conventional Intensional Type Theory, a feature
strongly demanded by Per Martin-Löf when seeing [2],
which translates into an intensional type theory with a
proof-irrelevant universe of propositions.

• As an example of applying proof-relevant OTT we
show that the encoding of natural numbers as W-types
is admissible in OTT in section 4. We also discuss
some limitations of this encoding with respect to the
definitional equality.

• In section 5 we present full OTT, combining proof-
irrelevance with a definitional rule for eliminating re-
flexive coercions—the usual computational behaviour

of equality in Intensional Type Theory. We have im-
plemented this system but leave a detailed investiga-
tion of its metatheoretic properties to further work.

2. Proof-Relevant OTT

We start with a basic dependent type theory TT (see fig-
ure 1) with Π,Σ,O, 1, 2,W but without equality. Note that
the type of Booleans (2) comes with a large elimination con-
stant, which expresses that tt is different from ff. This type
theory can be extended either to an Intensional Type Theory
(ITT) or Extensional Type Theory (ETT) by adding differ-
ent forms of propositional equality. In either case we intro-
duce a type former and the canonical proof of reflexivity:

Γ ` s0 : S Γ ` s1 : S
Γ ` s0 = s1 set

Γ ` s : S
Γ ` s : s = s

In the case of ETT we simply add the equality reflection
rule:

Γ ` s01 : s0 = s1
Γ ` s0 ≡ s1

This rule identifies definitional and propositional equality,
in the process we are throwing away the proof s01 for the
equality, hence terms of ETT are not sufficent as evidence
that a type is inhabited.

Moreover, a type is no guarantee that ETT terms will
compute safely in the presence of false hypotheses. Given
some Q : 1 = 1→1, we gain the ability to type

(λu :1. u u) (λu :1. u u)

and other such broken programs.
Alternatively, to extend TT to ITT we add an eliminator

together with a definitional equality:

Γ ` s : S Γ ` s′ : S Γ ` q : s = s′

Γ;x :S; y :S; z :x = y ` P [x, y, z] set
Γ ` p : Πx :S. P [x, x, x]

Γ ` q (eqElim x, y, z. P [x, y, z] | p) : P [s, s′, q]

s (eqElim x, y, z. P [x, y, z] | p) ≡ p s : P [s, s, s]

This eliminator gets stuck unless the equation really holds
definitionally, so computation remains safe in the presence
of false hypotheses, but it also gets stuck in the presence of
axioms. Moreover, it has been shown by Hofmann and Stre-
icher [6] that this eliminator is insufficent to prove unique-
ness of equality proofs, i.e. whether for s, s′ : s0 = s1 we
can construct irr s s′ : s = s′. This can be fixed by either
adding a second eliminator, traditionally called K, or by for-
malising a heterogeneous equality as suggested in [9]. The
latter has the practial advantage of avoiding the proliferation
of equality coercions.



Here, we introduce OTT as yet another extension of TT.
OTT is intensional in character, i.e. terms are evidence for
inhabitation. OTT uses heterogeneous equality but more
fundamentally it differs from both ITT and ETT in that re-
flexivity is not the canonical constructor for equality proofs
but rather every constructor c comes equipped with a con-
structor of equality c= which witnesses that c preserves
equality. In the case of λ the constant λ= implies the princi-
ple of extensionality. Using these constants we can reflect
equality derivations in ETT as explicit proof objects in OTT.

2.1. Observational Equality

We now introduce sets representing proofs of equality,
between sets and between inhabitants of sets. The idea is
to introduce sets which reflect the definitional equality. We
sometimes need to formulate equations between elements
of types which are provably equal: in Extensional Type
Theory, the equality reflection rule allows us to deduce that
these elements have a common type; we avoid this by mak-
ing the term-level equality heterogeneous.

Γ ` S0 set Γ ` S1 set
Γ ` S0 = S1 set

Γ ` s0 : S0 Γ ` s1 : S1
Γ ` (s0 :S0) = (s1 :S1) set

Each of these is an equivalence in the appropriate sense.

Γ ` S set
Γ ` S : S = S

Γ ` S01 : S0 = S1

Γ ` S`

01 : S1 = S0

Γ ` S01 : S0 = S1 Γ ` S12 : S1 = S2
Γ ` S01 ◦ S12 : S0 = S2

Γ ` s : S
Γ ` s : (s :S) = (s :S)

Γ ` s01 : (s0 :S0) = (s1 :S1)
Γ ` s`

01 : (s1 :S1) = (s0 :S0)

Γ ` s01 : (s0 :S0) = (s1 :S1) Γ ` s12 : (s1 :S1) = (s2 :S2)
Γ ` s01 ◦ s12 : (s0 :S0) = (s2 :S2)

You may notice that we often write equations which dif-
fer only in the subscripts of their schematic variables. This
pattern is set to continue, hence we introduce the notation
‖Φ[x, y]‖j

i to stand for Φ[xi, yi] = Φ[xj , yj ] for any for-
mula Φ. For example, the above transitivity rule becomes

Γ ` s01 : ‖s :S‖1
0 Γ ` s12 : ‖s :S‖2

1

Γ ` s01 ◦ s12 : ‖s :S‖2
0

In order to manipulate compound types, we shall need to
be able to project out the equality proofs for their compo-
nents. We introduce, for each B ∈ {Π,Σ,W}

Γ ` Q : ‖Bx :S. T[x]‖1
0

Γ ` Qπ : ‖S‖1
0

Γ ` Q : ‖Bx :S. T[x]‖1
0

Γ ` q : ‖s : S‖1
0

Γ ` Q(q) : ‖T [s]‖1
0

2.2. Type-directed Coercion

Just as the conversion rule allows terms to pass implicitly
between definitionally equal types, so provably equal types
have an explicit coercion between them. Moreover, this co-
ercion is coherent in that its input is provably equal to its
output.

Γ ` S01 : S0 = S1 Γ ` s0 : S0

Γ ` s0[S01〉S1
S0

: S1

Γ ` S01 : S0 = S1 Γ ` s0 : S0

Γ ` s0JS01|〉S1
S0

: (s0 :S0) = (s0[S01〉S1
S0

:S1)

We shall drop the annotations on coercions where they are
clear. For convenience, we shall also abbreviate the sym-
metric images of these operators, carefully respecting the
order of the type equation as we go:

〈S01]s1 7→ s1[S`

01〉 : S0

〈|S01Ks1 7→ (s1JS`

01|〉)` : (〈S01]s1 :S0) = (s1 :S1)

The coercion operator computes to a mapping from one
canonical type to another, provided they are compatible, ie.,
that they have the same type-former. For constant types,
coercion is always the identity:

Γ ` s : C Γ ` Q : C = C
Γ ` s[Q〉 ≡ s : C

C ∈ {O, 1, 2}

We coerce a function by translating its argument right-
to-left and its result left-to-right:

Γ ` f0 : Πx0 :S0. T0[x0] Γ ` Q : ‖Πx :S. T[x]‖1
0

Γ ` f0[Q〉 ≡ λx1 :S1. f0 (〈Qπ]x1)
[Q( 〈|QπKx1)〉

: Πx1 :S1. T1[x1]

Coercion for a pair just goes element by element:

Γ ` p0 : Σx0 :S0. T0[x0] Γ ` Q : ‖Σx :S. T[x]‖1
0

Γ ` p0[Q〉 ≡
(

p0 π0[Qπ〉 ,
p0 π1[Q(p0 π0JQπ|〉)〉

)
: Σx1 :S1. T1[x1]

For a tree, we obtain a recursive map from the W-type
elimination operator.

Γ ` w0 : Wx0 :S0. T0[x0] Γ ` Q : ‖Wx :S. T[x]‖1
0

Γ ` w0[Q〉 ≡ w0


rec w.Wx1 :S1. T1[x1] |
λs0 :S0;
f0 :T0[s0]→Wx0 :S0. T0[x0];
h :T0[s0]→Wx1 :S1. T1[x1].

node (s0[Qπ〉) (λt1 :T1[s0[Qπ〉].
h (〈Q(s0JQπ|〉)]t1))


: Wx1 :S1. T1[x1]



contexts

E ` valid
Γ ` S set

Γ; x :S ` valid

binders
Γ; x :S ` T [x] set

Γ ` Bx :S. T[x] set
B ∈ {Π,Σ,W}

constants
Γ ` valid
Γ ` C set

C ∈ {O, 1, 2}

large elimination
Γ ` b : 2 Γ ` T set Γ ` F set

Γ ` b (Case T ;F ) set

variables
Γ; x :S; ∆ ` valid
Γ; x :S; ∆ ` x : S

functions
Γ; x :S ` t[x] : T [x]

Γ ` λx :S. t[x] : Πx :S. T[x]

Γ ` f : Πx :S. T[x] Γ ` s : S
Γ ` f s : T [s]

tuples
Γ ` s : S Γ ` t : T [s]
Γ ` (s, t) : Σx :S. T[x]

Γ ` p : Σx :S. T[x]
Γ ` p π0 : S
Γ ` p π1 : T [p π0]

trees
Γ ` s : S Γ ` f : T [s]→Wx :S. T[x]

node s f : Wx :S. T[x]

Γ ` w : Wx :S. T[x]
Γ; w :Wx :S. T[x] ` P [w] set
Γ ` p : Πs :S; f :T [s]→Wx :S. T[x]; h :Πt :T [s]. P [f t].

P [node s f ]
Γ ` w (rec w. P [w] | p) : P [w]

constants
Γ ` valid
Γ ` () : 1
Γ ` tt : 2
Γ ` ff : 2

Γ ` x : O Γ ` S set
Γ ` x (Œ S) : S

Γ ` b : 2 Γ; b :2 ` P [b] set
Γ ` t : P [tt] Γ ` f : P [ff]

Γ ` b (case b. P [b] | t; f) : P [b]
conversion

Γ ` s : S0 Γ ` S0 ≡ S1
Γ ` s : S1

equivalence closure

Γ ` S set
Γ ` S ≡ S

Γ ` S0 ≡ S1
Γ ` S1 ≡ S0

Γ ` S0 ≡ S1

Γ ` S1 ≡ S2

Γ ` S0 ≡ S2

structural closure
Γ ` S0 ≡ S1 Γ; x :S0 ` T0[x] ≡ T1[x]

Γ ` Bx :S0. T0[x] ≡ Bx :S1. T1[x]
B ∈

{Π,Σ,W}
Γ ` b0 ≡ b1 : 2 Γ ` T0 ≡ T1 Γ ` F0 ≡ F1

Γ ` b0 (Case T0;F0) ≡ b1 (Case T1;F1)
large elimination (7→ ⊆ ≡)

Γ ` T set Γ ` F set
Γ ` tt (Case T ;F ) 7→ T
Γ ` ff (Case T ;F ) 7→ F

equivalence closure

Γ ` s : S
Γ ` s ≡ s : S

Γ ` s0 ≡ s1 : S
Γ ` s1 ≡ s0 : S

Γ ` s0 ≡ s1 : S
Γ ` s1 ≡ s2 : S
Γ ` s0 ≡ s2 : S

η-rules
Γ; x :S ` f0 x ≡ f1 x : T [x]
Γ ` f0 ≡ f1 : Πx :S. T [x]

Γ ` p0 π0 ≡ p1 π0 : S Γ ` p0 π1 ≡ p1 π1 : T [p0 π0]
Γ ` p0 ≡ p1 : Σx :S. T [x]

Γ ` s0 : C Γ ` s1 : C
Γ ` s0 ≡ s1 : C

C ∈ {O, 1}

structural closure
Γ ` s0 ≡ s1 : S Γ ` f0 ≡ f1 : T [s0]→Wx :S. T [x]

Γ ` node s0 f0 ≡ node s1 f1 : Wx :S. T [x]
plus structural rules for elimination forms

β-rules (7→ ⊆ ≡)
Γ; x :S ` t[x] : T [x] Γ ` s : S
Γ ` (λx :S. t[x]) s 7→ t[s] : T [s]

Γ ` s : S Γ ` t : T [s]
Γ ` (s, t) π0 7→ s : S
Γ ` (s, t) π1 7→ t : T [s]

Γ ` s : S Γ ` f : T [s]→Wx :S. T[x]
Γ; w :Wx :S. T[x] ` P [w] set
Γ ` p : Πs :S; f :T [s]→Wx :S. T[x]; h :Πt :T [s]. P [f t].

P [node s f ]
Γ ` node s f (rec w. P [w] | p) 7→

p s f (λt :T [s]. f t (rec w. P [w] | p)) : P [node s f ]

Γ; b :2 ` P [b] set Γ ` t : P [tt] Γ ` f : P [ff]
Γ ` tt (case b. P [b] | t; f) 7→ t : P [tt]
Γ ` ff (case b. P [b] | t; f) 7→ f : P [ff]

conversion
Γ ` s0 ≡ s1 : S0 Γ ` S0 ≡ S1

Γ ` s0 ≡ s1 : S1

Figure 1. TT, a type theory without propositional equality



The domain coercion tells us how to translate the source
shape s0 : S0 to the target shape; the codomain coercion
translates the target position of each subtree to the source
position of the subtree from which it is recursively obtained,
via the inductive hypothesis h. It is just as if we had defined
the coercion by this guarded recursive program:

node s0 f0 [Q〉 7→ node (from s0) (λt1. h (to t1) [Q〉)
where from s0 7→ s0[Qπ〉

to t1 7→ 〈Q(s0JQπ|〉)]t1

The point here is that coercions of canonical values be-
tween compatible always compute, regardless of the par-
ticular equational justification for that coercion. We can
guarantee compatibility for each type equation provable in
the empty context, and hence we shall have the canonicity
property we need.

Meanwhile, in the presence of Q : 1 = 1→1, we cannot
type λu :1. u u, but we do have

(λu :1. u[Q〉 u) (〈Q](λu :1. u[Q〉 u)) : 1
7→ (〈Q](λu :1. u[Q〉 u))[Q〉 (〈Q](λu :1. u[Q〉 u))

which then stops because Q equates incompatible types.

2.3. Structural Equality Proofs

We now reflect the η- and structural equality rules by in-
troducing corresponding term-formers for equality proofs.
Wherever the equality rules bind parameters, our equality
proofs abstract over pairs of provably equal values. It will
prove convenient to write {x :S}1

0 as an abbreviation for the
sequence of bindings x0 : S0; x1 : S1; x01 : x0 = x1. We
may write the corresponding argument sequence s0 s1 s01

as ~s01.
We establish equality between compatible types by pro-

viding the means to construct the coercion between them.
For B ∈ {Π,Σ,W}, we have

Γ ` S01 : ‖S‖1
0 Γ ` T01 : Π{x :S}1

0. ‖T [x]‖1
0

Γ ` B= S01 T01 : ‖Bx :S. T[x]‖1
0

We also add constant proofs for constants:

Γ ` valid
Γ ` C= : C = C

C ∈ {O, 1, 2}

Of course, these already follow by reflexivity, but we shall
later show how to compute reflexivity proofs, so we shall
need some values for the constants.

For the large elimination, we have

Γ ` b01 : ‖b‖1
0 Γ ` T01 : ‖T‖1

0 Γ ` F01 : ‖F‖1
0

Γ ` b01 (Case= T01;F01) : ‖b (Case T ;F )‖1
0

The pattern continues at the level of values. Again, we
have constants ()=, tt=,ff=. For functions, we have this:

Γ ` S01 : ‖S‖1
0 Γ ` t01 : Π{x :S}1

0. ‖t[x]‖1
0

Γ ` λ= S01 t01 : ‖λx :S. t[x]‖1
0

Γ ` f01 : ‖f :Πx :S. T[x]‖1
0 Γ ` s01 : ‖s :S‖1

0

Γ ` f01
= s01 : ‖f s :T [s]‖1

0

Note that the λ= constructor expresses the extensional equal-
ity between functions, given that the definitional equality
supports η-expansion.

For pairs, we supply

Γ ` s01 : ‖s :S‖1
0 Γ ` t01 : ‖t :T [s]‖1

0

Γ ` (s01,
= t01) : ‖(s, t) :Σx :S. T[x]‖1

0

Γ ` p01 : ‖p :Σx :S. T[x]‖1
0

Γ ` p01 π=
0 : ‖p π0 :S‖1

0

Γ ` p01 π=
1 : ‖p π1 :T [p π0]‖1

0

Reflexivity provides sufficient introduction behaviour
for the constant types, but let us have structural rules for
the eliminators2:

Γ ` x01 : ‖x :O‖1
0 Γ ` S01 : ‖S‖1

0

Γ ` x01 (Œ= S01) : ‖x (Œ S) :S‖1
0

Γ ` b01 : ‖b :2‖1
0 Γ ` P01 : Π{x :2}1

0. ‖P [x]‖1
0

Γ ` t01 : ‖t :P [tt]‖1
0 Γ ` f01 : ‖t :P [ff]‖1

0

Γ ` b01 (case= P01 | t01; f01)
: ‖b (case x. P [x] | t; f) :P [b]‖1

0

Finally, for trees, perhaps you will allow us to omit some
of the bureaucratic details:

Γ ` s01 : ‖s :S‖1
0 Γ ` f01 : ‖f :Wx :S. T[x]‖1

0

Γ ` node= s01 f01 : ‖node s f : Wx :S. T[x]‖1
0

Γ ` w01 : ‖w :Wx :S. T[x]‖1
0

Γ ` P01 : Π{y :Wx :S. T[x]}1
0. ‖P [y]‖1

0 Γ ` p01 : ‖p‖1
0

Γ ` w01 (rec= P01 | p01) : ‖w (rec y. P [y] | p) :P [w]‖1
0

We have given structural proof rules for the type theory
without equality, but when are equality types and equality
proofs equal? Intuitively, equations are equal if their respec-
tive sides are equal, hence we add:

Γ ` S01 : ‖S‖1
0 Γ ` T01 : ‖T‖1

0

Γ ` S01 == T01 : ‖S = T‖1
0

Γ ` s01 : ‖s :S‖1
0 Γ ` t01 : ‖t :T‖1

0

Γ ` s01 == t01 : ‖(s :S) = (t :T )‖1
0

2The rule for (Œ ) is clearly derivable, but we include it anyway to
maintain our systematic approach.



Now, we have one equality proof former for each of
our original term formers, but these proof formers are now
term formers too! Are we in a vicious circle? Fortunately
not: to figure out which equality proofs should be provably
equal, consider the observations which are performed on
them. We only use equality proofs to construct other equal-
ity proofs and to coerce values between equal types; coer-
cion does not inspect the proof of the equation; hence all
proofs of an equation may be considered equal. We there-
fore add

Γ ` Q0 : S = S Γ ` Q1 : S = S
Γ ` Irr(S) Q0 Q1 : ‖Q‖1

0

Γ ` q0 : (s :S) = (s :S) Γ ` q1 : (s :S) = (s :S)
Γ ` irr(s :S) q0 q1 : ‖q‖1

0

It is sufficient to consider proofs of reflexive equations here,
because any proof of any equation may be coerced to an
equal proof of a reflexive equation: if Q : S = T , then
S == Q` : (S = T ) = (S = S).

What we have done here is to reflect equality in the op-
posite direction to ETT. We have provided a checkable term
language for those equality derivations which require more
than just computation rules. Every equality derivation in
ETT becomes an equality proof in OTT: structural rules
map to structural proofs, comptational rules map to reflex-
ive proofs, equality reflection just pastes in the proof which
it previously concealed.

3. Justifying Proof-Relevant OTT

In this section we give a syntactic translation from Proof-
Relevant OTT into the pure theory TT. Formally, this trans-
lation can be understood as a model construction where
contexts Γ are translated into extended contexts Γ1

0 as pre-
scribed below, thus the respect operator is definable in the
target theory. Since reductions and definitional equalities
in OTT are simulated by their counterparts in the translated
theory, we can conclude that OTT shares TT’s metatheo-
retic properties, i.e. normalisation and decidability of def-
initional equality. Consequently, we do not have to imple-
ment OTT via this translation but can instead reduce terms
and decide equality for OTT directly.

We may construct our observational equality for canon-
ical types and values by recursion on canonical types (and
then, in the case of W-types, on the values they contain).
We exactly pack up the proofs required by the correspond-
ing structural rules. For each B ∈ {Π,Σ,W}, we take

‖Bx :S. T[x]‖1
0 7→ ‖S‖1

0 × Π{x :S}1
0. ‖T [x]‖1

0

Equality for equal constant types C ∈ {O, 1, 2} is trivial

C = C 7→ 1

Equality for incompatible types yields O. We construct
equality for values as follows:

‖f :Πx :S. T[x]‖1
0 7→ ‖S‖1

0 × Π{x :S}1
0. ‖f x :T [x]‖1

0

‖p :Σx :S. T[x]‖1
0 7→ ‖p π0 :S‖1

0 × ‖p π1 :T [p π0]‖1
0

‖z :O‖1
0 7→ 1

‖u :1‖1
0 7→ 1

‖tt :2‖1
0 7→ 1

‖ff :2‖1
0 7→ 1

(tt :2) = (ff :2) 7→ O
(ff :2) = (tt :2) 7→ O
‖node s f : Wx :S. T[x]‖1

0 7→ ‖s :S‖1
0×

(‖T [s]‖1
0 × Π{t :T [s]}1

0. ‖f t :Wx :S. T[x]‖1
0)

Observe that, as we might hope, our definition yields

‖node s f‖1
0 ≡ ‖s‖1

0 × ‖f‖1
0

but we give the expanded form to show that the recursive
definition is suitably guarded.

Now that equations compute in terms of other types, we
do not need any extra work to explain when equations are
equal. Notice also that all our equations are given ultimately
by types constructed from Π, Σ, O and 1. It is correspond-
ingly direct, albeit laborious, to show that all proofs of equa-
tions are provably equal and thus implement the Irr and irr
operations. We now implement the remaining operations.

3.1. Structural Proof Rules

By construction, we may implement the structural equal-
ity rules for the canonical type- and term-formers. We have
also ensured that the components we collect for each equal-
ity proof on canonical objects are exactly those we need
to implement the non-canonical operations. On types, we
have our projections for the domains and ranges of equal
compound types:

Qπ 7→ Q π0 Q(q) 7→ Q π1 ~q

Our type-directed coercions will now reduce accordingly.
To complete the story on the type level, we must give the

structural proof for the large elimination. We use a double
small elimination on the elements themselves to compute
which of the two proofs we need to deploy. In the off-
diagonal cases, the proof that the two scrutinees coincide
inhabits O. We summarize the proof term in the form of a
functional program which is readily constructable:

For b01 :‖b‖1
0, T01 :‖T‖1

0, F01 :‖F‖1
0,

b01 (Case= T01;F01) 7→ respCase b0 b1 b01 where
respCase : Π{b :2}1

0. ‖b (Case T ;F )‖1
0

respCase tt tt () 7→ T01

respCase tt ff z 7→ z (Œ T0 =F1)
respCase ff tt z 7→ z (Œ T1 =F0)
respCase ff ff () 7→ F01



Meanwhile, at the value level, application becomes ap-
plication and projection becomes projection

(S01, f01) = s01 7→ f01 ~s01 p01 π=
0 7→ p01 π0

p01 π=
1 7→ p01 π1

The proof for the small elimination on 2 goes like the
proof for the large elimination, so we omit it, and if you are
lucky enough to possess two elements of the O type, you
may use either to prove any structural rule you like!

For the recursor on W-types, we must prove that equal
inductions on equal trees yield equal results. Again, we ab-
breviate a cumbersome double elimination by a functional
program whose recursion is clearly guarded.

For w01 : ‖w :Wx0 :S0. T0[x0]‖1
0, p01 : ‖p‖1

0,

w01 (rec= P01 | p01) 7→ resprec w0 w1 w01 where
resprec : Π{w :Wx :S. T[x]}1

0.
‖w (rec y. P [y] | p) :P [w]‖1

0

resprec (node s0 f0) (node s1 f1) (s01, f01 as (T s
01, ))

7→ p01
= s01

= f01
=

(λ= T s
01 (λ{t :T [s]}1

0.
resprec (f0 t0) (f1 t1) (f01

= t01)))

3.2. Reflexivity via Respect

Given the structural operations, we can show how to con-
struct reflexivity proofs by mapping each term former to its
equality proof former. We shall need to generalise this op-
eration in order to push it under binders: each bound vari-
able in the source term becomes a pair of provably equal
bound variables in the proof. In particular, we must show
that terms remain invariant with respect to equations on con-
text extensions.

If Γ;∆ ` valid, we say ∆ is a Γ-extension. Given such
a ∆, we may construct (given fresh names), the Γ-extension
∆1

0 and term sequences ∆i as follows

E1
0 7→ E

(∆; x :S[∆])10 7→ ∆1
0;x0 :S[∆0];x1 :S[∆1];x01 :‖x‖1

0

Ei 7→ ε
(∆; x :S[∆])i 7→ ∆i;x :S[∆i]

The idea is that as we go under binders ∆ in a term, we go
under binders ∆1

0 in the corresponding structural proof. We
may now define the respect operator by mutual recursion on
the syntax of types and terms

Γ;∆ ` T [∆] set
Γ;∆1

0 ` T J∆K : T [∆0] = T [∆1]

Γ;∆ ` t[∆] : T [∆]
Γ;∆1

0 ` tJ∆K : (t[∆0] :T [∆0]) = (t[∆1] :T [∆1])

For types, with B ∈ {Π,Σ,W} and C ∈ {O, 1, 2}

(Bx :S. T[x])J∆K 7→ B= SJ∆K (λ{x :S}1
0. T J∆; x :SK)

C 7→ C=

(b (Case T ;F ))J∆K 7→ bJ∆K (Case= T J∆K;F J∆K)

For terms, we give the basic picture,

xJ∆K 7→ x01 if x ∈ ∆
(λx :S. t[x])J∆K 7→ λ= SJ∆K (λ{x :S}1

0. tJ∆; x :SK)
(f s)J∆K 7→ fJ∆K = sJ∆K

...

We may now give the constructions for reflexivity just as

T 7→ T JEK t 7→ tJEK

The respect operator computes structurally through the
syntax of terms, but it gets stuck at free variables—those
from Γ rather than ∆—so we must add the respect operator
to the syntax of the theory in which we are performing the
construction. Of course, the computation continues when-
ever the free variables are instantiated. For this to make
sense, the proofs computed by the respect operator must be
invariant with the definitional equality. It suffices to ensure
that the β-rules commute with respect—we have

(λ= SJ∆K (λ{x :S}1
0. tJ∆; x : SK)) = sJ∆K

≡ tJ∆; x :SK[s[∆0], s[∆1], sJ∆K]
≡ t[s]J∆K

and similarly for the others.

3.3. Symmetry, Transitivity and Coherence

Symmetry is defined by recursion on type and proceeds
componentwise. Only the compound types require any
thought, but symmetry of value equations over the domains
allows us to exploit the proof that the ranges coincide at
equal values:

(S, T )` 7→
(
S`, λ{x :S}0

1.
(
T
−→
x`

10

)`)
The same construction works for equations on functions:

(S, f)` 7→
(
S`, λ{x :S}0

1.
(
f
−→
x`

10

)`)
We must now establish the coherence of these coercions,

by mutual recursion on types.

f0J(S, T )|〉Πx1:S1. T1[x1]
Πx0:S0. T0[x0]

: f0 = λx1 :S1. f0 (〈S]x1)
[
T
−−−−→
〈|SKx1

〉
7→ λ= S (λ{x :S}1

0. f0
= (x01 ◦ (〈|SKx1)`) ◦

f0 (〈S]x1)
r
T
−−−−→
〈|SKx1

∣∣∣〉)



Here, x01 : x0 = x1 and (〈|SKx1)` : x1 = 〈S]x1, hence
we establish that f0 x0 = f0 (〈S]x1). The coherence of the
codomain coercion does the rest.

For pairs, coherence is componentwise:

(s0, t0)J(S, T )|〉Σx1:S1. T1[x1]
Σx0:S0. T0[x0]

: (s0, t0) =
(
s0[S〉 , t0

[
T
−−−→
s0JS|〉

〉)
7→

(
s0JS|〉 ,= t0

r
T
−−−→
s0JS|〉

∣∣∣〉)
For trees, we must supply an inductive proof. Here we

write the corresponding program:

w0J(S, T )|〉Wx1:S1. T1[x1]
Wx0:S0. T0[x0]

7→ coh w0 where
coh : Πw0 :Wx0 :S0. T0[x0]. w0 = w0[(S, T )〉
coh (node s0 f0) 7→

node= s01 (λ=(T01 ~s01) (λ{t :T [s]}1
0.

f0
= (t01 ◦ (〈|T ~s01Kt1)`) ◦ coh (f0 (〈T ~s01]t1))))

where s1 7→ s0[S〉 : S1

s01 7→ s0JS|〉 : ‖s :S‖1
0

The coherence proof for each canonical type may invoke
transitivity of equality for its components. Transitivity for
type and value equalities is mutually defined with coherence
by recursion on type.

For compound types, we have

(S01, T01) ◦ (S12, T12) 7→

S01 ◦ S12,

λ{x :S}2
0. T01

−−−−−→
x0JS01|〉◦

T12

−−−−−−−−−−−−→
(x0JS01|〉)` ◦ x02


Note the way we get from T0[x0] to T2[x2] by building a
stepping stone, x0[S01〉 : S1, equal to x0 and hence x2.
We could equally have chosen 〈S12]x2. The same thing
happens in the case of equality for functions—it is to enable
this construction that an equation between functions carries
the equation between their domains.

(S01, f01) ◦ (S12, f12) 7→

S01 ◦ S12,

λ{x :S}2
0. f01

−−−−−→
x0JS01|〉◦

f12

−−−−−−−−−−−−→
(x0JS01|〉)` ◦ x02


In all other cases, transitivity proceeds componentwise.

4. Encoding datatypes

In Extensional Type Theory with W-types we can en-
code a vast variety of datatypes, inductive types like nat-
ural numbers or lists, inductive families like vectors but
also coinductive types or families [1]. We can implement
datatypes with the associated constructors and eliminators
in OTT - however, in the theory as presented so far this
encoding is not completely faithful: not all expected defi-
nitional equalities hold.

The natural numbers provide an illustrative example. We
may define

Nat 7→Wb :2. b (Case O; 1)
zero 7→ node tt (λz :O. z (Œ Nat))
suc 7→ λn :Nat. node ff (λu :1. n)

Now let us show how to derive instances of the induction
schema. For each n :Nat ` P [n] set, we need to define

m : Nat
z : P [zero]
s : Πn :Nat. P [n] → P [suc n]

m (NatE n. P [n] | z; s) : P [m]

via primitive recursion on W-types. We give the informal
recursive definition:

node tt f (NatE n. P [n] | z; s) 7→
z[P JnK[zero, node tt f, prf ]〉 where

prf 7→ λ={z :O}1
0. z0 (Œ z0 (Œ Nat) = f z1)

node ff f (NatE n. P [n] | z; s) 7→
s (f ()) (f () (NatE n. P [n] | z; s))

Observe that z : P [node tt (λz :O. z (ŒNat))] where we
require a proof of P [node tt f ]: there is more than one rep-
resentation of zero, but now we can at least prove that they
are all equal: the coercion crucially exploits the extensional
equality of functions on the empty domain.

The same technique lifts to tree-like datatypes in gen-
eral: we use functions with a finite domain to code tuples
of subtrees: every such function is provably equal to a case
analysis. In ITT, we cannot establish this identity and the in-
duction principles for W-type encodings are not derivable.

However, we have lost something. Only in the case that
the domain is 1 is the definitional equality strong enough to
identify the arbitrary function in the general node with the
particular implementation chosen by the defined construc-
tor: λu :1. f () ≡ f by the η-rules for Π and 1.

In general, we can expect a coercion to fix up the type
in each case. The computation rules we usually give for
datatypes in ITT do not hold definitionally here, although
they are provable by coherence of coercion. This is just
because the W-type encoding replaces tuples whose defini-
tional equality is componentwise, by functions whose defi-
nitional equality is only schematic.

One approach to solving this problem is to consider ex-
tending the definitional equality for functions, comparing
them at a finite covering of their domain, not just an ar-
bitrary x: functions from O would be equal automatically,
functions from 2 would be equal if they coincided at tt and
at ff, and so on. Another approach is to seek an alternative
set of type-forming primitives which retain the first-order
character of first-order data.



5. Full OTT

Although the observational type theory we have pre-
sented here is sufficient to capture the provable equations
of Extensional Type Theory, its definitional equality gives
us less than we might hope. In this section, we consider the
problems and propose extensions to our basic system which
might improve the situation.

One clearly desirable extension is definitional proof ir-
relevance, internalising the equality of equality proofs. We
would add

Γ ` Q0 : ‖S‖1
0 Q1 : ‖S‖1

0

Γ ` Q0 ≡ Q1 : ‖S‖1
0

and the corresponding rule for terms, dropping the Irr and
irr operators. Operationally this is harmless, as equality is
decided in a type-directed manner and coercion does not in-
spect equality proofs—they actually are irrelevant! Indeed,
the fact that we were able to construct an observational type
theory without definitional proof irrelevance came as quite a
surprise to us: the first author’s model construction in [2] re-
lies on proof irrelevance, in the absence of a heterogeneous
equality.

A more serious concern is that our system has actually
lost some of the definitional equations of ITT. In the latter
setting, where equality is effectively a datatype with reflex-
ivity as its sole constructor, we have

b (eqElim x, y, z. x (Case T ;F ) | p) ≡ p b

for an arbitrary non-canonical b. Our coercion operator
computes only for compatible canonical types. Here,

p[b]
[
b (Case T ;F )

〉
6≡ p[b]

although the proposition

p[b]
[
b (Case T ;F )

〉
= p[b]

holds by coherence of coercion. The second author’s con-
struction of dependent pattern matching [9] relies heavily
on the manipulation of equality proofs on pattern variables,
inevitably non-canonical: the pattern matching equations
hold definitionally, but only because the equational machin-
ery computes away when the proofs are by reflexivity. One
tempting approach is just to add

Γ ` x : X
Γ ` x

[
X

〉
≡ x : X

Γ ` x : X
Γ ` x

q
X

∣∣〉 ≡ x : ‖x :X‖1
0

Care must be taken to avoid critical pairs in the presence
of the type-directed coercion rules. Our η-rules avoid this
problem for Π- and Σ-types, but for W-types, we risk ex-
panding an operation which is definitionally the identity to

one which is only provably the identity. If we replace our
current reduction of coercion for W to the rec operator with
its equivalent defined by direct recursion, we escape this
problem: a recursive call to a reflexive coercion is also a
reflexive coercion.

If we seek to combine these two extensions, we need to
take into account the fact that a direct appeal to X is not the
only syntactic form which a proof of X = X can take. We
would need a rule like

Γ ` S ≡ T Γ ` Q : S = T Γ ` s : S

Γ ` s[Q〉TS ≡ s : T

The above coherence rule would then become derivable by
proof irrelevance. This proposed coercion rule has signifi-
cant operational implications: to decide whether it ‘fires’ or
not, the machine must decide the definitional equality of S0

and S1. That is, evaluation and equality become mutually
recursive.

Of course, it is not hard to write a program which ap-
pears to implement such a mutual recursion—indeed we
have done so—but it is not easy to explain why it gives rise
to a complete decision procedure, or indeed why evaluation
terminates at all. It certainly falls outside the scope of the
existing proof methods, hence we make no bold claims on
the subject.

Finally, in a programming language like Epigram [10]
we should like to be able to introduce datatypes directly,
whether or not they have suitable encodings via W-types in
principle. Functional codings of first-order data are hard to
compile efficiently: in order to preserve sharing, one must
memoize the functions, effectively recovering their first-
order representation by trickery.

Epigram supports the generous notion of inductive fam-
ily proposed by Dybjer in [4], where constructors may target
specific indices. A standard example is the family of finite
sets:

n : Nat
Fin n set

n : Nat
fz n : Fin (suc n)

n : Nat i : Fin n
fs n i : Fin (suc n)

This definition fits badly with observational equality: given
a proof q : (suc n) = m, we should expect

fz n [Fin= q〉

to reduce to a canonically constructed element of Finm, but
there is no such thing for a general m.

One solution is to enforce the standard trick for in-
troducing such definitions in systems which require the
constructors of inductive types to target all indices uni-
formly: replace constraint-by-instantiation with constraint-
by-equation, in the style of Henry Ford—‘any k you like as



long as it’s suc n’. The definition becomes

k : Nat
Fin k set

n : Nat q : suc n = k
fz n q : Fin k

n : Nat i : Fin n q : suc n = k
fs n i : Fin k

Of course, the old constructors are still definable, giving q
by reflexivity, but coercion is now able to compute under
the constructors by appeal to transitivity:

fz n q [Fin= q′〉 ≡ fz n (q ◦ q′)
fs n i q [Fin= q′〉 ≡ fs n i (q ◦ q′)

6. Conclusions and further work

We have presented and justified proof-relevant OTT, a
theory whose propositional equality can simulate equality
in Extensional Type Theory, and which at the same time has
the desirable property of canonicity. We go further and add
both definitional proof-irrelevance for equality types and re-
ductions for reflexivity coercions leading to OTT. We have
implemented OTT as part of Epigram and are hopeful that
we can justify this theory, and in particular establish the im-
portant metatheoretic properties of normalisation and decid-
ability.

Moreover, we are confident that we can eliminate proofs
at runtime and hence generate efficent code from OTT defi-
nitions. We can also implement inductive families as prim-
itive in OTT and plan to add coinductive families such that
the corresponding coinduction principles are provable. An-
other important extension is the addition of quotient types
which give us a notion of abstract datatypes relevant not
only for the faithful formalisation of mathematical theories
but also in software engineering. We are looking forward
to many exciting applications of OTT ranging from a faith-
ful presentation of category theory to the implementation of
well-behaved concurrent programs within Type Theory.
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