
Outrageous but Meaningful Coincidences
Dependent type-safe syntax and evaluation

Conor McBride
University of Strathclyde
conor@cis.strath.ac.uk

Abstract
Tagless interpreters for well-typed terms in some object language
are a standard example of the power and benefit of precise indexing
in types, whether with dependent types, or generalized algebraic
datatypes. The key is to reflect object language types as indices
(however they may be constituted) for the term datatype in the host
language, so that host type coincidence ensures object type coinci-
dence. Whilst this technique is widespread for simply typed object
languages, dependent types have proved a tougher nut with nontriv-
ial computation in type equality. In their type-safe representations,
Danielsson [2006] and Chapman [2009] succeed in capturing the
equality rules, but at the cost of representing equality derivations
explicitly within terms. This article delivers a type-safe represen-
tation for a dependently typed object language, dubbed KIPLING,
whose computational type equality just appropriates that of its host,
Agda. The KIPLING interpreter example is not merely de rigeur—
it is key to the construction. At the heart of the technique is that key
component of generic programming, the universe.

1. Introduction
Last century, we learned from Altenkirch and Reus [1999] how to
represent simply typed terms precisely as an inductive family of
datatypes [Dybjer 1991] in a dependently typed language. The idea
is to make the type system of the host language police the typing
rules of the object language by indexing the datatype representing
object terms with a representation of object types. The payoff is
that programs which manipulate the object language can take type
safety for granted—well-typedness of object language terms be-
comes a matter of basic hygiene for the host. There is a rich litera-
ture of work which exploits this technique, both in the dependently
typed setting and in Haskell-like languages with sufficiently precise
typing mechanisms. For a small selection, see Baars and Swierstra
[2004]; Brady and Hammond [2006]; Carette et al. [2009]; Chen
and Xi [2003]; Pasalic et al. [2002].
This paper makes the jump to representing dependently typed

object languages in a precise type-safe manner, a problem compli-
cated by the fact that object language type equality requires non-
trivial computation. However, the host language type system also
boasts a computational equality: let us steal it. If we can push object
language computation into host language types, object type equal-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity becomes a matter of coincidence, specified by the outrageously
simple method of writing the same variable in two places! The key
is to choose our coincidences with care: we should not ask for coin-
cidence in what types say if we only want coincidence in what types
mean. Once we have found what host type captures the ‘meaning’
of object types, we can index by it and proceed as before.

The representation recipe. Recall the basic type-safe encoding
method, working in Agda [Norell 2008]. First, define types.

data ! : Set where
ι : !
! : ! → ! → !

Next, define contexts, with de Bruijn [1972] indices typed as wit-
nesses to context membership.

data Cx : Set where
E : Cx
, : Cx → ! → Cx

data " : Cx → ! → Set where
top : ∀ {Γ τ } → Γ , τ " τ
pop : ∀ {Γ σ τ } → Γ " τ → Γ , σ " τ

Finally, define terms by giving an indexed syntax reflecting the
typing rules which, fortunately, are syntax-directed. I make the
traditional use of comment syntax to suggest typing rules.

data $: Cx → ! → Set where

-- variables witness context membership
var : ∀ {Γ τ } → Γ " τ

--————————
→ Γ $ τ

-- λ-abstraction extends the context
lam : ∀ {Γ σ τ } → Γ , σ $ τ

--————————————
→ Γ $ σ ! τ

-- application demands a type coincidence
app : ∀ {Γ σ τ } → Γ $ σ ! τ → Γ $ σ

--———————————————————
→ Γ $ τ

Notice how, for app, the domain of the function and the argu-
ment type must coincide. Agda will reject apps unless the candi-
dates for σ are definitionally equal in type !: it’s really checking
types. Moreover, with ‘implicit syntax’ [Norell 2007] combining
insights from Damas and Milner [1982] via Pollack [1992] with
pattern unification from Miller [1991], Agda makes a creditable
effort at type inference for object language terms!
McKinna and I [McBride and McKinna 2004] showed how to

write a typechecker which yields typed terms from raw preterms,

1 2010/6/8

establishing coincidence by testing object-type equality. Augusts-
son and Carlsson [1999] showed how such guarantees can deliver
a tagless interpreter, with no rechecking of types during execution.
Let us recall the construction. First, interpret the types, explain-

ing what their values are. For simplicity, I interpret the base type as
the natural numbers.

! "! : ! → Set
! ι"! = N
!σ ! τ "! = !σ "! → !τ "!

Next, lift this interpretation to contexts, giving a suitable notion of
environment—a tuple of values equipped with projection.

! "C : Cx → Set
!E "C = 1
!Γ , σ "C = !Γ"C × !σ "!

! "! : ∀ {Γ τ } → Γ " τ → !Γ"C → !τ "!

! top"! (γ, t) = t
!pop i "! (γ, s) = ! i "! γ

Finally, interpret terms as functions from environments to values.

! "" : ∀ {Γ τ } → Γ $ τ → !Γ"C → !τ "!

!var i "" γ = ! i "! γ
! lam t "" γ = λ s → ! t "" (γ, s)
!app f a "" γ = ! f "" γ (!a "" γ)

However, if we try to replay this game for dependent types, we
get into a bit of a tangle. The recipe ‘first types, next contexts, fi-
nally terms’ seems to be thwarted by the infernal way that every-
thing depends on everything else: contexts contain types, but later
types must be validated with respect to earlier contexts; terms in-
habit types, but dependent types mention terms. When all you have
is a hammer, dependent type theory looks like a screw.
Brave souls undeterred press on. Boldly, we might attempt a

mutual definition. Here is a fragment showing how type-level com-
putation (here, If) really mixes everything up.

mutual

data Cx : Set where

E : Cx

, : (Γ : Cx) → Ty Γ → Cx

data Ty : Cx → Set where

Π : ∀ {Γ} → (S : Ty Γ) → Ty (Γ , S)
--—————————————————————

→ Ty Γ

2 : ∀ {Γ} --——————
→ Ty Γ

If : ∀ {Γ} → Γ $ 2 → Ty Γ → Ty Γ
--—————————————————————

→ Ty Γ
-- and more

data $: (Γ : Cx) → Ty Γ → Set where

lam : ∀ {Γ S T } → Γ , S $ T
--—————————————

→ Γ $ Π S T

app : ∀ {Γ S T } → Γ $ Π S T → (s : G $ S)
--———————————————————————

→ Γ $ T [s]

tt ff : ∀ {Γ} --—————————
→ Γ $ 2

-- and more

Can you see trouble? Let me point out the main problems:
• What are these peculiar mutual datatypes? They are succes-
sively indexed by those which have gone before. This kind
of definition, called “inductive-inductive” by analogy with
“inductive-recursive”, has no standard presentation in the liter-
ature, although Forsberg and Setzer [2010] have recently made
valuable progress in this direction. Agda fails to forbid them,
but that does not mean that they make sense.

• Where have I hidden the variables?We could try to proceed as
before, but we immediately hit a snag.

data " : (Γ : Cx) → Ty Γ → Set where
top : ∀ {Γ T } → Γ , T " T -- bad
pop : ∀ {Γ S T } → Γ " T → Γ , S " T -- bad

In both cases, we have T : Ty Γ in Γ , T or Γ " T . However,
in the return type, we need to put T in a longer context, but
we find T & : Ty (Γ , −). We need some mechanism for
weakening, but what? Can we define it as a function, extending
our mutual definition in an even more peculiar way? We could
make weakening explicit with a constructor

∗ : ∀ {Γ S } → Ty Γ → Ty (Γ , S)

at the cost of extending the object language with an artefact of
the encoding.

• What is thisT [s]? In the application rule, we need to substitute
the topmost bound variable in T with the term s . Again we
must decide how to implement this, by defining a function or
extending the syntax.

• What coincidence does application demand? Here, the domain
of the function must equal the argument type syntactically. We
might hope that G $ If tt 2 2 and G $ 2 would be compatible,
but sadly If tt 2 2 and 2 are differently constructed wooden
lumps of syntax, unanimated by computation. Of course, adding
explicit syntax for weakening and substitution provides yet
more ways for the same type to look different. To be suitably
liberal, we must also define type equality Γ $ S ≡ T
(necessitating also value equality), then add something like the
‘conversion rule’.

cast : ∀ {Γ S T } → Γ $ S → Γ $ S ≡ T
--————————————————————

→ Γ $ T

We now have an object language with explicit casts and equal-
ity evidence, where these are silent in the host language.
These are hard problems, and I applaud both Danielsson and

Chapman for taking them on. Their work—in particular, Chap-
man’s thesis [Chapman 2008]—has much to teach us about the
principles and the pragmatics of deep embeddings for dependently
typed terms. But I, being a shallow sort of fellow, propose instead
to cheat. In particular, rather than developing my own theory of
equality, I plan to steal one. As a result, I shall be able to give
a dependently typed object language whose encoding fits its syn-
tax, with no artefacts for weakening or substitution, and no equality
evidence. Moreover, I shall use nothing more remarkable than in-
dexed inductive-recursive definitions—these are quite remarkable,
actually, but they do have a set-theoretic model [Dybjer and Setzer
2001]. The resulting system is not, I must confess, entirely satisfac-
tory, but it is a reassuringly cheap step in a useful direction.

2. What is KIPLING?
‘Do you like Kipling?

‘I don’t know, you naughty boy, I’ve never kippled!’
from a postcard by Donald McGill

2 2010/6/8

E $ VALID
Γ $ VALID Γ $ S TYPE

Γ, x :S $ VALID
x &∈ Γ

Γ $ VALID
Γ $ {ZERO,ONE, TWO,NAT} TYPE

Γ $ S TYPE Γ, x :S $ T TYPE
Γ $ {SG, PI} x :S . T TYPE

Γ $ b : 2 Γ $ {T, F} TYPE
Γ $ IF b T F TYPE

Γ $ b : 2 Γ $ {T, F} TYPE
Γ $ IF TT T F ≡ T

Γ $ b : 2 Γ $ {T, F} TYPE
Γ $ IF FF T F ≡ F

Γ $ b ≡ b′ : 2 Γ $ T ≡ T ′ Γ $ F ≡ F ′

Γ $ IF b T F ≡ IF b′ T ′ F ′

Γ $ VALID
Γ $ VOID : ONE

Γ $ VALID
Γ $ {TT, FF} : TWO

Γ $ VALID
Γ $ ZE : NAT

Γ $ n : NAT
Γ $ SU n : NAT

Γ, x :S $ T TYPE
Γ $ s : S Γ $ t : T [s]
Γ $ s & t : SG x :S . T

Γ, x :S $ t : T
Γ $ LAM x . t : PI x :S . T

Γ $ s : S Γ $ S ≡ T
Γ $ s : T

Γ $ VALID
Γ $ x : S

x :S ∈ Γ

Γ $ z : ZERO Γ $ Γ $ T TYPE
Γ $ MAGIC z T : T

Γ $ b : TWO Γ, x :TWO $ P TYPE
Γ $ t : P [TT] Γ $ f : P [FF]

Γ $ IF b x .P t f : P [b]

Γ $ n : NAT Γ, x :NAT $ P TYPE
Γ $ z : P [ZE]
Γ $ s : PI n :NAT . PI h :P [n] . P [SU n]

Γ $ REC n x .P z s : P [n]

Γ $ p : SG x :S . T
Γ $ FST p : S

Γ $ p : SG x :S . T
Γ $ SND p : T [FST p]

Γ $ f : PI x :S . T Γ $ s : S
Γ $ f $ s : T [s]

Γ, x :TWO $ P TYPE
Γ $ t : P [TT] Γ $ f : P [FF]
Γ $ IF TT x .P t f ≡ t : P [TT]
Γ $ IF FF x .P t f ≡ f : P [FF]

Γ $ n : NAT Γ, x :NAT $ P TYPE
Γ $ z : P [ZE]
Γ $ s : PI n :NAT . PI h :P [n] . P [SU n]
Γ $ REC ZE x .P z s ≡ z : P [ZE]
Γ $ REC (SU n) x .P z s

≡ s $ n $ REC n x .P z s : P [SU n]

Γ, x :S $ T TYPE
Γ $ s : S Γ $ t : T [s]

Γ $ FST (s & t) ≡ s : S
Γ $ SND (s & t) ≡ t : T [s]

Γ $ Γ, x :S $ t : T Γ $ s : S
Γ $ (LAM x . t) $ s ≡ t[s] : T [s]

Figure 1. The KIPLING rules (omitting some structural and equivalence closure rules in type and value equality)

Let us fix a dependently typed language to model. KIPLING
is a rudimentary dependent type theory with the minimal non-
trivial feature for computing types—IF.1 The (scope-annotated)
syntax of KIPLING types and terms is as follows. I have left-
justified the canonical (introduction) forms and right-justified the
non-canonical (elimination) forms.

〈varΓ,x〉 ::= x
| 〈varΓ〉

〈tyΓ〉 ::= ZERO | ONE | TWO | NAT
| SG x : 〈tyΓ〉 .

˙
tyΓ,x

¸

| PI x : 〈tyΓ〉 .
˙
tyΓ,x

¸

| IF 〈tmΓ〉 〈tyΓ〉 〈tyΓ〉
〈tmΓ〉 ::= 〈varΓ〉

| MAGIC 〈tmΓ〉 〈tyΓ〉
| VOID
| TT | FF | IF 〈tmΓ〉 x.

˙
tyΓ,x

¸
〈tmΓ〉 〈tmΓ〉

| ZE | SU 〈tmΓ〉
| REC 〈tmΓ〉 x.

˙
tyΓ,x

¸
〈tmΓ〉 〈tmΓ〉

| 〈tmΓ〉& 〈tmΓ〉 | FST 〈tmΓ〉 | SND 〈tmΓ〉
| LAM x. 〈tmΓ〉 | 〈tmΓ〉 $ 〈tmΓ〉

Figure 1 shows the typing rules for KIPLING. The equality rules
for IF make type equality computational, and IF’s structural rule
makes type equality depend on value equality. I use a set notation
to denote multiple premises and conclusions, and omit structural
and equivalence closure rules, for brevity.
If you are keen to try KIPLING, I give a shallow embedding into

Agda in Figure 2, declaring the canonical components and defining
the rest. I omit a definition for PI, because Agda already functions.
Note that I use the large Agda function space wherever KIPLING
binds a variable to give a dependent type.

1 Rudyard Kipling’s poem ‘If...’ has inspired many youths to greatness.

data Zero : Set where
magic : Zero → (X : Set) → X
magic ()

record 1 : Set where
constructor void

data 2 : Set where
tt : 2
ff : 2

If : 2 → Set → Set → Set
If tt T F = T
If ff T F = F

if : (b : 2) → (P : 2 → Set) → P tt → P ff → P b
if tt P t f = t
if ff P t f = f

data N : Set where
ze : N
su : N → N

rec : (n : N) → (P : N → Set) →
P ze → ((n : N) → P n → P (su n)) → P n

rec ze P z s = z
rec (su n) P z s = s n (rec n P z s)

record Σ (S : Set) (T : S → Set) : Set where
constructor ,
field

fst : S
snd : T fst

Figure 2. A shallow embedding of KIPLING in Agda

3 2010/6/8

3. The KIPLING Universe
We may not know how to represent a dependently typed syntax,
but we can at least collect a universe—in the sense of Martin-Löf
[1984]—of the canonical KIPLING types, by means of an inductive-
recursive definition. That is, we define simultaneously a datatype U
which encodes the sets and a function El which decodes the codes.
This is an entirely standard technique, indeed, a key motivating
example for induction-recursion [Dybjer and Setzer 1999].

mutual
data U : Set where
‘Zero’ ‘1’ ‘2’ ‘N’ : U
‘Π’ ‘Σ’ : (S : U) → (El S → U) → U

El : U → Set
El ‘Zero’ = Zero
El ‘1’ = 1
El ‘2’ = 2
El ‘N’ = N
El (‘Π’ S T) = (s : El S) → El (T s)
El (‘Σ’ S T) = Σ (El S) λ s → El (T s)

Observe the crucial use ofEl to encode value dependency func-
tionally in the definition of U. Please note, this use of El S → U
is not ‘higher-order abstract syntax’ in the sense of the Logical
Framework [Harper et al. 1993]. Here, → denotes the full Agda
function space, giving us a value we can compute with, not just a
variable we can place. We can certainly define the non-dependent
variants of ‘Π’ and ‘Σ’.

‘→’ : U → U → U
S ‘→’ T = ‘Π’ S λ → T
‘×’ : U → U → U
S ‘×’ T = ‘Σ’ S λ → T

However, the power of the function space also allows us to equip U
with IF, even though it is not a constructor—and all the better so,
for it computes!

‘If ’ : 2 → U → U → U
‘If ’ tt T F = T
‘If ’ ff T F = F

What we have done here is to fix inU the meanings of the closed
KIPLING types. We have not yet given a syntax for types which
gives representation to things in U, but we have determined a target
for interpreting that syntax. Be clear that, thanks to the full power
of→,U contains many types which are not expressible as KIPLING
types. For example, we could define

‘Vec’ : U → N → U
‘Vec’ X ze = ‘1’
‘Vec’ X (su n) = X ‘×’ ‘Vec’ X n

and then form

‘Π’ ‘N’ λ n → ‘Vec’ ‘2’ n : U

but KIPLING does not provide a type-level recursor.
To give a syntax, we must somehow name the KIPLING-

presentable creatures from this jungle. Before we can come to
terms with syntax, however, we must develop an understanding of
variables, and the contexts which account for them.

4. Dependent Contexts and Typed Variables
Contexts assign types to free variables. Each context determines
a set of environments—tuples of values which the corresponding
variables may simultaneously take. Contexts in dependent type
systems form what de Bruijn [1991] calls telescopes, where each

successive type may mention—i.e. depend on the values of—all
previous variables. We may thus specify such a dependent set as
a function from an environment to U. Correspondingly, dependent
contexts naturally lend themselves to inductive-recursive definition.

mutual
data Cx : Set where
‘E’ : Cx
, : (Γ : Cx) → (!Γ"C → U) → Cx

! "C : Cx → Set
! ‘E’"C = 1
!Γ , S "C = Σ !Γ"C λ γ → El (S γ)

The semantic object corresponding to a ‘Γ-type’ is a function in
! Γ "C → U, giving a closed type for any given environment. This
functional presentation will act as the carrier for a more precise
shallow embedding of KIPLING types into our U, indirected via El
into Agda’s Set. Note that context extension Γ,S ensures that S is
indeed a Γ-type.

Digression—left- versus right-nesting. The above notion of con-
text is not news to anyone who has seen Pollack’s treatment of de-
pendent record types. Pollack [2002] notes that these left-nested
records have a fixed field structure but dependent field types, where
their right-nested counterparts permit variant structures.

data Rec : Set1 where
E : Rec
, : (S : Set) → (S → Rec) → Rec

! "R : Rec → Set
!E "R = 1
!S , R "R = Σ S λ s → !R s "R

This Rec does not rely on induction recursion, but it is necessarily
large, as it packs up Sets themselves, rather than their codes.
Again, because the S → Rec is full functional abstraction, not
just variable-binding, the value of each field determines the whole
field structure of what follows, not just the types of the fields.
This power to code variant structures makes record right-nesting
ideal for encoding nodes in datatypes, as Dybjer and Setzer [1999]
do and we follow [Chapman et al. 2010], but rotten for encoding
contexts. For one thing, we typically require ready access to the
‘local’ right end of a context. More seriously, you cannot define
a type of references uniformly for a given R : Rec, only a
notion of projection specific to each value in ! R "R. We rather
expect a context to determine our choice of variables, good for any
environment or none. End of digression.
Let us indeed check that left-nested contexts give rise to a notion

of variable. As we know what a Γ-type is, we can even repeat the
Altenkirch and Reus [1999] method of indexing variables in Γwith
the Γ-type they deliver.

data " : (Γ : Cx) (T : !Γ"C → U) → Set where
top : ∀ {Γ T } → Γ , T"T · fst
pop : ∀ {Γ S T } → Γ"T → Γ , S "T · fst

What a blessed relief it is to index by the functional presentation
of Γ-types! When we tried to index variables by the syntax of
types, we had to give syntactic account of weakening, but here,· fst
turns a function from a short environment to a function from an
extended environment. We have recovered a suitably typed notion
of de Bruijn index, ready for deployment as the variables of a type-
safe syntax. Let us make sure that we can interpret our variables as
projections from environments.

4 2010/6/8

! "! : ∀ {Γ T } → Γ"T → (γ : !Γ"C) → El (T γ)
! top"! (γ , t) = t
!pop i "! (γ , s) = ! i "! γ

Plus ça change, plus c’est la même chose! It is indeed a pleasure
to see the very same function accepted at the more precise type, its
journey leftward tallying precisely with the chain of fst projections
at the type level.

5. A Combinatory Excursion
We are likely to spend most of the rest of this paper programming
with functions from environments which take the form of tuples. It
is worth making a small investment in combinators to tidy up our
higher-order programming, keeping the plumbing under the floor-
boards wherever we can. Indeed I started a moment ago, writing the
composition T · fst for λ γ → T (fst γ). Composition is familiar
to functional programmers: in Haskell, we have

(.) :: (s -> t) -> (r -> s) -> (r -> t)
f . g = \ r -> f (g r)

But what is the type of composition for dependently typed
functions? Martin-Löf challenged Norell at his thesis defence to
give the following type:

· : ∀ {a b c} {R : Set a } {S : R → Set b}
{T : (r : R) → S r → Set c}

→ (∀ {r } (s : S r) → T r s)
→ (g : (r : R) → S r)
→ (r : R) T r (g r)

f ·g = λ r → f (g r)

As you can see, every opportunity for dependency is taken. The
parameters R, S , T define a telescope. The polymorphism of f is
exactly enough to cope with the dependent type of g . The definition
also incorporates universe polymorphism, as witnessed by the Set
levels a , b and c, so we can compose at any level.

Digression—type inference in Agda. How on earth can type
inference cope with this complexity? It is not as tricky as one might
at first think, because the variables abstracted by the unknowns
are used at full generality in the types of f and g . To unify (r :
R) → S r with, say, (X : Set) → X → Set, we must solve

R ≡ Set
S r ≡ r → Set for all r

so a promising candidate solution is

R ,→ Set
S ,→ λ r → r → Set

Agda does attempt general higher-order unification: as Huet [1975]
showed, it is undecidable, and worse, it does not yield unique solu-
tions, hence it is hardly the thing to flesh out the clear intentions of
the programmer. However, Miller [1991] observed that the special
case where constraints on functions apply them to distinct univer-
sally quantified variables f &x ≡ t yield candidate most general2
solutions f ,→ λ&x→t, which succeed subject to scope conditions.
Agda’s type inference is based on Miller’s unification, and can thus
be expected to solve functional variables from general constraints.
End of digression.
The plumbing of an environment through a computation is

something which the λ-calculus makes ugly, but combinatory logic
takes in its stride [Curry and Feys 1958]. What do K and S do, if
not relativise constants and application to an environment? Let us

2 assuming the η law holds

facilitate an applicative programming style relative to an environ-
ment [McBride and Paterson 2008], by equipping the traditional
combinators for dependent types. The K combinator has just the
type you might expect in the Hindley-Milner world.

K : ∀ {a b} {Γ : Set a } {X : Set b} → X → Γ → X
K = λ x γ → x

There is no way to make the type of the constant depend on an
environment it discards!
However, the s combinator more than compensates, again

taking a full telescope of parameters. I make it a left-associative
infix operator, as befits its usage for lifting application. I make these
combinators very small, so that it is easy to ignore them and just
gain the applicative intuition for what is going on.

S : ∀ {a b c}
{Γ : Set a }
{S : Γ → Set b}
{T : (γ : Γ) → S γ → Set c}

→ (f : (γ : Γ) (s : S γ) → T γ s)
→ (s : (γ : Γ) → S γ)
→ (γ : Γ) → T γ (s γ)

S = λ f s γ → f γ (s γ)

The type reflects the possibility that we are lifting a dependent
function, whose Π-type itself depends on the environment.
We shall need two more paddles before we set forth for the

creek. As the context grows, so the environment becomes a bigger
tuple. We must write functions from environments, but we may
prefer to do so in a curried style, for reasons both aesthetic and
technical—the latter I shall attend to later. Hence we may need to
apply dependent uncurrying (also known as the eliminator for Σ-
types) to our functions.

V : ∀ {S T } {P : Σ S T → Set}
→ ((s : S) (t : T s) → P (s , t))
→ (st : Σ S T) → P st

Vp (s , t) = p s t

The type shows the inevitable dependency at every opportunity, but
the function is as we might expect.3
The inverse, dependent currying, will also prove useful.
Λ : ∀ {a } {S T } {P : Σ S T → Set a }

→ ((st : Σ S T) → P st)
→ (s : S) (t : T s) → P (s , t)

Λp s t = p (s , t)

The names I have chosen for these operations show ‘two be-
come one’ and ‘one become two’, respectively. Moreover, Λgives
the implementation of the lambda!
Note that

Λ f S s ≡ λ γ → f (γ , s γ)

exactly corresponding to the instantiation of a bound variable.
Now, with heart and nerve and sinew, we are ready to carry on

KIPLING!

6. How to Say what U you Mean
Recall that we recovered a workable presentation of de Bruijn
variables by indexing with what types mean, not what they say. Let
us apply the same approach to the syntax of types and terms. If we
have a shallow embedding of KIPLING types as functions to U, we
can use it to index a deep embedding of KIPLING types, effectively

3 At present the ‘lazy’ variant V p st = p (fst st) (snd st) is
the one that works. Agda erroneously makes the above strict, losing type
preservation!

5 2010/6/8

explaining which meanings can be said—a ‘type-is-representable’
predicate in the style of Crary et al. [1998]. We can also use shallow
types to index a deep embedding of KIPLING terms, guaranteeing
compatibility of the represented values. The catch is that we shall
need to say what those values are, if we are to feed them to the
functions which represent dependent types. A tagless interpreter
is not just a nifty example, it is an essential component of the
definition!
The deep embedding of KIPLING takes the form of an indexed

inductive-recursive definition, with this signature:
mutual

data ! (Γ : Cx) : (!Γ"C → U) → Set where
-- Γ!T contains syntax representing T itself

data $ (Γ : Cx) : (!Γ"C → U) → Set where
-- Γ $ T contains syntax representing T ’s inhabitants

! "" : ∀ {Γ T } → Γ $ T → (γ : !Γ"C) → El (T γ)
-- tagless interpreter yields function from representation

For convenience, I define the datatypes of sets and terms mutually,
but the old trick (in my thesis [McBride 1999] if nowhere else) of
coding mutual definitions as single definitions indexed by choice of
branch recovers indexed induction recursion in its standard form.

Representing the canonical types. Let us now explain which of
our shallow functional types have a syntactic representation. We
start with the primitive constants:

ZERO : Γ! K ‘Zero’
ONE : Γ! K ‘1’
TWO : Γ! K ‘2’
NAT : Γ! K ‘N’

Next, we add Π-types.
PI : ∀ {S T } → Γ!S → Γ , S !T

--———————————————————
→ Γ! K ‘Π’ S S S ΛT

Pleasingly, Agda can infer the types of S and the uncurried T . For
the curious amongst you, they are as follows

S : !Γ"C → U
T : !Γ,S "C → U ≡ (Σ !Γ"C λ γ → El (S γ)) → U

with T taking not only the environment, but also an S -value.
Currying, we get

ΛT : (γ : !Γ"C) → El (S γ) → U

so, plumbing the environment,
K ‘Π’ S S S ΛT ≡ λ γ → ‘Π’ (S γ) λ s → T (γ, s)

which is indeed a meaningful Γ-type. I have, I must confess, been
slightly crafty: by choosing an uncurried T , I have arranged for the
value of T to be readily inferrable, provided Agda can synthesize a
type for the range. Had I chosen the curried variant, uncurrying T
in the premise, thus

PI : ∀ {S T } → Γ!S → Γ , S ! VT
--———————————————————

→ Γ! K ‘Π’ S S S T

the type inference problem for a range with synthesized type
Γ , S !T ′ would be

VT ≡ T ′ unpacking to T (fst γ) (snd γ) ≡ T ′ γ

which is not solved by pattern unification. We expect the represen-
tation to determine the represented type, so type information will
propagate outwards if we set things up accordingly.
The treatment of Σ-types follows the same plan.

SG : ∀ {S T } → Γ!S → Γ , S !T
--———————————————————

→ Γ! K ‘Σ’ S S S ΛT

We have syntax for our canonical types, reflecting the construc-
tors of U directly, but what about KIPLING’s IF? We have defined
its meaning, If , by computation over U. Let us just provide the
means to say it!

IF : ∀ {T F } → (b : Γ $ K ‘2’) → Γ!T → Γ!F
--—————————————————————————————

→ Γ! K ‘If ’ S !b "" S T S F

This, our only form of dependency, we give a term to branch upon.
To say which type we mean, we must interpret that term!
Digression—recursive large elimination. We cannot quite play
the same game to compute types by recursion on N. We may
certainly implement a primitive recursor for U in Agda:

RecU : U → (N → U → U) → N → U
RecU Z S ze = Z
RecU Z S (su n) = S b (RecU Z S n)

The trouble comes when we try to represent it. For IF, we could
ask for representatives of T and F , but here we cannot ask for a
representative of S . To do so, we would need S to be a function
from environments to U, so we need to encode its argument types
in a context: while we can encode N as function to U, we cannot
yet encode U itself! End of digression.
Digression—the power of IF. Do not underestimate the power
of dependent types with IF as the only mechanism for inspecting
values. We may write Gödel’s ‘truth-predicate’ IF b ONE ZERO,
encoding any decidable property as a type of triumph or disaster.
For undecidable properties with checkable certificates, Gödel-code
the certificates, then write a certificate-checker as a function inhab-
iting PI NAT TWO and reflect the result with the truth-predicate.
We may, of course, use SG to present propositions as the existence
of certificates which check triumphantly. With IF, as Kipling put it,
‘Yours is the Earth and everything that’s in it’; but it takes more to
gain the universe, and vice versa. End of digression.
Well typed terms with a tagless interpreter. Let us now give the
terms, together with their interpretation as functions from environ-
ments to elements of the relevant type. Agda requires that we write
the syntax and its interpreter in separate chunks of the mutual def-
inition, but it helps to keep things with their meanings on paper.
For the most part, we shall benefit from adopting a point-free style,
quietly plumbing the environment with combinators.
Our typed de Bruijn indices give us variables, interpreted as

projections.
VAR : ∀ {T } → Γ"T

--—————————
→ Γ $ T

!VAR x "" = !x "!

We have constructors for our (nonempty) base types, readily inter-
preted in the host language.

VOID : Γ $ K ‘1’
TT FF : Γ $ K ‘2’
ZE : Γ $ K ‘N’
SU : Γ $ K ‘N’→ Γ $ K ‘N’
!VOID"" = Kvoid
! TT"" = K tt
! FF "" = K ff
! ZE"" = K ze
! SU n "" = K su S !n ""

6 2010/6/8

We can equip ZERO with an eliminator, giving us anything.

MAGIC : ∀ {T } → Γ $ K ‘Zero’→ Γ!T
--————————————————

→ Γ $ T

Its interpretation dismisses the empty type.

!MAGIC {T } z "" = Kmagic S !z "" S (KEl S T)

Meanwhile, ONE needs no eliminator, for it tells us nothing of
interest.
The dependent eliminator for TWO delivers a type parametrized

by a value. Although we have no object-level type of functions to
U, we can achieve the same effect by binding a variable, specifying
the result as a type in an extended context.

IF : ∀ {P } → (b : Γ $ K ‘2’)
→ Γ , K ‘2’!P
→ Γ $ ΛP S K tt → Γ $ ΛP S K ff
--—————————————————————————

→ Γ $ ΛP S !b ""

The P which gives the meaning to the return type is thus a function
from a tuple—to use it with the implicit Γ-environment, we need
merely curry it! This IF does indeed deliver P instantiated to any
Boolean, provided it can be delivered for TT and FF. We may
implement the function compactly with a helper function.

! IF {P } b t f "" = ifHelp S !b ""where
ifHelp : (γ :) → (b : 2) → El (P (γ , b))
ifHelp γ tt = ! t "" γ
ifHelp γ ff = ! f "" γ

We can give the induction principle for N in the same way. The
‘induction predicate’ P is a function over environments extended
with a number—the combinatory shorthand struggles to cope with
the extra variable binding in the step case, so I give the expansion.

REC : ∀ {P }
→ (n : Γ $ K ‘N’)
→ Γ , K ‘N’!P
→ Γ $ ΛP S Kze
→ Γ $ (λ γ → ‘Π’ ‘N’ λ n → P (γ , n) ‘→’ P (γ , su n))
--——

→ Γ $ ΛP S !n ""

!REC {P } n z s "" = recHelp S !n ""where
recHelp : (γ :) → (n : N) → El (P (γ , n))
recHelp γ ze = !z "" γ
recHelp γ (su n) = !s "" γ n (recHelp γ n)

Let us turn now to the compound types. Here is pairing, which
necessarily evaluates its first component to type its second.

& : ∀ {S T } → (s : Γ $ S) → Γ $ T S !s ""
--—————————————————————————

→ Γ $ K ‘Σ’ S S S T

We also need the projections.

FST : ∀ {S T } → Γ $ K ‘Σ’ S S S T
--————————————————

→ Γ $ S

SND : ∀ {S T } → (p : Γ $ K ‘Σ’ S S S T)
--——————————————————————————

→ Γ $ T S (λ γ → fst (!p "" γ))

The type of the second projection depends on the value of the first,
so I had hoped to write Γ $ T S (K fst S ! p ""), but inference

failed, hence my explicit expansion. Moreover, the implementation
requires expansion in all three cases.4

!s & t "" = λ γ → !s "" γ , ! t "" γ
! FST p "" = λ γ → fst (!p "" γ)
! SND p "" = λ γ → snd (!p "" γ)

Functional abstraction is straightforward, and application just
follows the rule. Interpretation is bracket abstraction!

LAM : ∀ {S T } → Γ , S $ VT
--————————————————

→ Γ $ K ‘Π’ S S S T

$: ∀ {S T } → Γ $ K ‘Π’ S S S T → (s : Γ $ S)
--————————————————————————————

→ Γ $ T S !s ""
! LAM t "" = Λ! t ""
! f $ s "" = ! f "" S !s ""

What coincidence does application require? The coincidence is of
type meaning, not just of type syntax. If we have two candidates for
S (functions in !Γ "C → U), then they must be equal up to Agda’s
intensional equality of functions, which most certainly normalizes
under binders. We have stolen the computational power we need
from the host language!
Note, by the way, the care with which I have manipulated T in

the rules for LAM and $. As Pierce and Turner [1998] observed,
we should expect to push types into introduction forms and infer
them from elimination forms. Correspondingly, I choose a curried
T in the type of LAM, so that the type pushed in will yield a
constraint

T γ s ≡ . . .

amenable to pattern unification. A similar analysis leads to the
curried choice in $, but this time we expect to learn T from
synthesized type of the function. By aligning our definitions with
the usual flow of type information, we turn Agda’s constraint solver
into a rather effective bidirectional type checker for KIPLING. Of
course, we need to give top level types to our definitions, but we
shall never need to supply these hidden shallow types manually
when building terms.
This completes the presentation of KIPLING—its types, its type-

safe terms, and its tagless interpreter. Rather, it would do, had I not
made a rather subtle deliberate mistake.5 We shall find out what
this mistake is—and fix it—once we have tried to construct some
KIPLING programs and proofs.

7. Programming in KIPLING (First Attempt)
If you can wait and not be tired by waiting, then you might enjoy
using Agda as an interactive editor and evaluator for this imple-
mentation of KIPLING. Let us start with a little device to allow us
to state types in KIPLING and recover the corresponding shallow
type to use when building terms.

[] : {T : ∀ {Γ} → !Γ"C → U} →
(∀ {Γ} → Γ!T) → Set

[] {T } = ∀ {Γ} → Γ $ T

Closed types should make sense in any context. If we write a closed
KIPLING type, there is a good chance Agda can infer the shallow
type (polymorphic in the unused context) which it represents. We
may then use that polymorphic shallow type to compute the Agda

4 It’s frankly astonishing how effective Agda’s implicit syntax mechanism
turns out to be. The trouble is that the system’s limits are far from clear. It
is hard to tell what shouldn’t work, and what is rather a lacuna.
5 A mistake becomes deliberate when you decide to keep it in your paper.

7 2010/6/8

type the corresponding KIPLING terms should inhabit if we are to
be able to use them under binders.
Given primitive recursion for NAT, a reasonable first assignment

is addition. Agda’s interactive construction technology allows us
to see what we are doing, although we see the interpreted types
and values, rather than the KIPLING syntax. Even so, the pragmatic
strategy is to develop examples with the shallow embedding, then
translate them. Here, then, is addition, with de Bruijn indices de-
coded for human consumption in comments.6

ADD : [PI NAT (PI NAT NAT)]
ADD = LAM{-x -} (LAM{-y-} (REC (VAR{-x -}(pop top)) NAT

VAR{-y-}top
(LAM (LAM{-sum-} (SU VAR{-sum-}top)))

))

Let us confirm that two and two make four. If we ask Agda to
evaluate, even without giving an environment, we find

!ADD $ SU (SU ZE) $ SU (SU ZE)""
= λ γ → su (su (su (su ze)))

which is four in any environment.
Programming addition is all very well, but we should really try

to use KIPLING as a proof language, too. Let us start by reflecting
the Booleans as triumph and disaster, respectively.

TRUE : ∀ {Γ} (b : Γ $ K ‘2’) → Γ!
TRUE b = IF b ONE ZERO

The in the type means ‘go figure!’, and Agda does indeed figure
out which shallow type I mean from the KIPLING type I write. Note
that TRUE is not a KIPLING function. Rather it is a schematic Agda
abbreviation for KIPLING types. When used in KIPLING, it must
always be fully applied.
What should we like to be true? We should be able to test, and

hence assert, equality of numbers. Here is the code: I have the un-
fair advantage that my thesis explains the systematic translation
of pattern matching to recursion operators. A machine can be per-
suaded to emit the following encoding:

NATEQ : [PI NAT (PI NAT TWO)]
NATEQ =
LAM{-x -} (REC (VAR{-x -}top) (PI NAT TWO)

(LAM{-y-} (REC (VAR{-y-}top) TWO
TT -- NATEQ $ ZE $ ZE = TT
(LAM (LAM FF)) -- NATEQ $ ZE $ SU = FF

))
(LAM{-x -} (LAM{-xq-}

(LAM{-y-} (REC (VAR{-y-}top) TWO
FF -- NATEQ $ SU x $ ZE = FF
(LAM (LAM

(VAR{-xq-}(pop (pop (pop (top))))
$ VAR{-y-}(pop top))))

-- NATEQ $ SU x $ SU y = NATEQ $ x $ y
))

))
)

Defining equality in this manner gives us an easy proof that
the constructors of NAT are injective and disjoint: by computation,
TRUE (NATEQ $ SU x $ ZE) represents the same shallow type as
ZERO; by computation, TRUE (NATEQ $ SU x $ SU y) means the
same as TRUE (NATEQ $ x $ y). On the other hand, it takes work
to show that this equality is reflexive. Let us begin. We may copy

6 Comprehension of de Bruijn syntax is often proposed as a reverse Turing
test. I sometimes find this worrying.

the goal into the type parameter of an induction—now we are using
its bound variable, y below—and see if that makes progress.

REFL : [PI{-x -} NAT
(TRUE (NATEQ $ VAR{-x -}top $ VAR{-x -}top))]

REFL =
LAM{-x -} (REC{-y-} (VAR{-x -}top)

(TRUE (NATEQ $ VAR{-y-}top $ VAR{-y-}top))
?
?

) -- does not typecheck, but it should

It is indeed a horror to watch the things you gave your life to,
broken, but let us stoop to build them up with worn out tools. Agda
gives a type error, reporting a conflict:

Γ, K ‘N’ &= Γ

How is it possible that we compare different contexts? Do we need
to worry about weakening and substitution, after all? Has the whole
business been a mirage? It is time to stop hacking and start thinking.

8. How does it work?
I claim to have implemented KIPLING, but I am apparently lying,
as the failure of the above construction—a textbook mathematical
induction—demonstrates. Let us classify what would constitute
success.
I should, first of all, clarify the assumptions I make about ≡ in

Agda: it is not precisely specified, nor is it entirely clear what is
implemented. However, Agda is broken if its definitional equality
is not a congruence ≡ which, moreover, validates the β-rule and
the defining equations of programs with non-overlapping patterns.
For convenience, I shall assume that Agda also supports the η-law
for functions.

f ≡ λ x → f x if x &∈ f

We may thus consider all functions from environments to take the
form λ γ → ... without further worry. I assume also that Agda’s
typing and equality rules are stable under well typed substitution.
Again, if this somehow does not hold, the fault is not mine!
We should identify a syntactic translation −† from KIPLING

syntax on paper to terms in Agda. For types and terms, T† and t†

are just the de Bruijn index translations of the syntax, implicitly
depending on the variables in scope: the KIPLING grammar is
scoped, after all, and the syntactic productions are mapped one-
to-one. Note that de Bruijn index translation respects substitution,
so t[s]† = t†[s†].
We shall also need an interpretation −‡ from KIPLING syntax,

taking contexts to Cx, types to functions from environments to U,
and terms to functions from environments γ to some El (T γ). I
shall spell this translation out more fully.

E‡ = ‘E’
Γ,S ‡ = Γ‡,S ‡

ZERO‡ = K ‘Zero’
ONE‡ = K ‘1’
TWO‡ = K ‘2’
NAT‡ = K ‘N’

(SG S T)‡ = K ‘Σ’ S S ‡ S ΛT ‡

(PI S T)‡ = K ‘Π’ S S ‡ S ΛT ‡

(IF b T F)‡ = K ‘If ’ S b‡ S T ‡ S F ‡

t‡ = ! t† ""

In order for computation to make sense, we had better be sure
that interpretation respects substitution. Syntactic substitution in

8 2010/6/8

KIPLING should correspond to instantiating the environment after
interpretation.

PROPOSITION 1 (Interpretation Respects Substitution). The fol-
lowing implications hold.

Γ, x :S $ T TYPE ∧ Γ $ s : S ∧
T ‡ : !Γ‡,S ‡ "C → U ∧

s‡ : (γ : !Γ‡ "C) → El (S ‡ γ)
⇒ (T [s])‡ ≡ ΛT ‡ S s‡ : !Γ‡ "C → U

Γ, x :S $ t : T ∧ Γ $ s : S ∧
T ‡ : !Γ‡,S ‡ "C → U ∧

t‡ : (γ : !Γ‡,S ‡ "C) → El (T ‡ γ) ∧
s‡ : (γ : !Γ‡ "C) → El (S ‡ γ)

⇒ (t[s])‡ ≡ Λ t‡ S s‡ : (γ : !Γ‡ "C) → El (T ‡ (γ, s‡ γ))

Note that I have been careful to require not only that T , t , and
s make sense according to the KIPLING rules, but also that their
Agda translations make sense. We shall thus be safe to consider
whether the interpretations do the right thing, without worrying
about whether they are well typed. The type safety of the translation
is the next concern.
We should lift our translation from syntax to judgments. For

each KIPLING judgment, we should identify what we expect to
be true in Agda about its translations. We should then attempt to
prove that the Agda claims always hold, by mutual induction on
KIPLING derivations. The cases which fail will reveal the bugs.
Below, I have been careful to augment the direct interpretation
of each judgment with some hygienic conditions about the well-
formedness of the judgment in the first place, thus strengthening
our inductive hypotheses.

PROPOSITION 2 (Translations Preserve Judgments). The follow-
ing implications all hold.

Γ $ VALID ⇒ Γ‡ : Cx
Γ $ T TYPE ⇒ T † : Γ‡ !T ‡ ∧ Γ‡ : Cx
Γ $ t : T ⇒ t† : Γ‡ $ T ‡ ∧

T † : Γ‡ !T ‡ ∧ Γ‡ : Cx
Γ $ S ≡ T ⇒ S ‡ ≡ T ‡ : !Γ‡ "C → U ∧

S † : Γ‡ !S ‡ ∧ T † : Γ‡ !T ‡ ∧
Γ‡ : Cx

Γ $ s ≡ t : T ⇒ s‡ ≡ t‡ : (γ : !Γ‡ "C) → El (T ‡ γ) ∧
s† : Γ‡ $ T ‡ ∧ t† : Γ‡ $ T ‡ ∧
T † : Γ‡ !T ‡ ∧ Γ‡ : Cx

Suppose we can prove the former. Let us try to prove the latter.
Proof attempt for Proposition 2. We proceed by induction on
KIPLING derivations.
For context validity, type formation, and the syntax-directed

typing rules, the proof is by construction: each production in the
grammar is mapped by −† to a constructor whose type directly
states the requirements for this proof to go through. For example,
consider the PI case.

Γ $ S TYPE Γ, x :S $ T TYPE
Γ $ PI x :S . T TYPE

Inductively, we have

S † : Γ‡ !S ‡ T † : Γ‡,S !T ‡ Γ‡ : Cx

and we note the type of the PI constructor, suitably instantiated:

PI : Γ‡ !S ‡ → Γ‡,S ‡ !T ‡ → Γ‡ ! K ‘Π’ S S ‡ S ΛT ‡

Hence
PI S † T † : Γ‡ ! K ‘Π’ S S ‡ S ΛT ‡ Γ‡ : Cx

as required. Let us consider also application, where substitution is
involved.

Γ $ f : PI x :S . T Γ $ s : S
Γ $ f $ s : T [s]

Inductively, we have some basic hygiene and

f † : Γ‡ $ K PI S S ‡ S ΛT ‡ s† : Γ‡ $ S ‡

so we get the demanded hygiene and

f † $ s† : Γ‡ $ ΛT ‡ S s‡

hence by Proposition 1, (T [s])‡ ≡ ΛT ‡ S s‡ as required.
There is no syntax associated with the conversion rule

Γ $ s : S Γ $ S ≡ T
Γ $ s : T

so we had better check that s† does indeed have both types required
of it. Inductively, we have

s† : Γ‡ $ S ‡ S ‡ ≡ T ‡ : !Γ‡ "C → U

Agda’s definitional equality is a congruence, so we note that

Γ‡ $ S ‡ ≡ Γ‡ $ T ‡ : Set hence s† : Γ‡ $ T ‡

and the case goes through—the inductive hypothesis assures us that
Agda’s definitional equality includes KIPLING’s equational theory.
So, we had better check the equality rules, in order to vali-

date that inductive assurance. Equivalence closure follows from
Agda’s equivalence closure. For type equality, the structural rules
go through by congruence of Agda’s ≡, and the two computation
rules go through by definition of ‘If ’.
For the terms, we can check the computation rules by running

the interpreted programs. Let us check the β-rule, for example.

Γ $ Γ, x :S $ t : T Γ $ s : S
Γ $ (LAM x . t) $ s ≡ t[s] : T [s]

Translating the left-hand side, we get
Λ! t† "" S !s† "" i.e. Λ t‡ S s‡

which must equal (t[s])‡ by Proposition 1.
For the structural rules, our induction can only go through if

our interpreter is compositional. Our inductive hypotheses give us
equality of interpretation for corresponding components—this had
better be sufficient, via congruence, to deliver equality of interpre-
tation of the whole. For example, in the interpretation of pairing,

!s & t "" = λ γ → !s "" γ, ! t "" γ

you can see that the ‘skeleton’ of the right-hand side—the term
outside the recursive ! S "" calls—does not depend on s or t .
Correspondingly, if we know that ! s′ "" ≡ ! s "" and ! t ′ "" ≡
! t "", then congruence gives us that !s & t "" ≡ !s & t "".
In effect, then, to be compositional, the interpreter must be given

as the fold of an algebra on values unaccompanied by the syntax
which produced them. If we check the skeletons, there is nothing
obviously wrong—everything outside the recursive calls appears to
be independent of unevaluated terms. But as Hoare observed, this is
not to say that there is obviously nothing wrong. When interpreting
REC, I wrote:

!REC {P } n z s "" = recHelp S !n ""where
recHelp : (γ :) → (n : N) → El (P (γ , n))
recHelp γ ze = !z "" γ
recHelp γ (su n) = !s "" γ n (recHelp γ n)

which looks compositional. However, Agda supports helper func-
tions by λ-lifting them [Johnsson 1985], so we really get this:

9 2010/6/8

!REC {P } n z s "" = recHelp Γ P z s S !n ""where
recHelp Γ P z s γ ze = !z "" γ
recHelp Γ P z s γ (su n) =

!s "" γ n (recHelp Γ P z s γ n)

which leaves the syntax of z and s on display, and indeed, the
particular context Γ in which the interpretation was constructed.
The helper function for IF is similarly afflicted. Proof attempt
failed.
Getting back to our type error, we can now see how the in-

duction predicate, interpreted under two binders, failed to match
the range of the goal type, under one, with mismatching contexts
present in the normal forms of our stuck conditional and recursor.
The remedy is, however, apparent. We must restore composi-

tionality. If we still have if and rec available from our earlier ex-
perimental shallow embedding to Set, we can write

! IF {P } b t f "" =
K if S !b "" S Λ(El ·P) S ! t "" S ! f ""

!REC {P } n z s "" =
Krec S !n "" S Λ(El ·P) S !z "" S !s ""

and recover the property that the interpreter is a fold.

Proof of Proposition 2 resumed. Again, we proceed by induction
on derivations. As before, the syntax-directed rules are respected,
by construction and appeal to Proposition 1. As before, the con-
version rule is respected by congruence, appealing to the respected
equation. Type equality is respected by congruence for the struc-
tural rules, and by the program equations for ‘If ’. The structural
rules for term equality are now respected by a fully compositional
interpreter, allowing appeal to congruence. The computation rules
hold by definitional equality in Agda, and Proposition 1. "
Proposition 1 follows from a more general property, allowing

simultaneous substitution.

PROPOSITION 3 (Respect for Simultaneous Substitution). Let ∆
and Γ be valid KIPLING contexts, with ∆‡, Γ‡ : Cx. Let σ be a
substitution from variables in ∆ to terms over Γ such that

Γ $ σ x : σ S for x :S ∈ ∆

Moreover, let σ‡ : !Γ "C → !∆ "C be an Agda function such that
for each x :S ∈ ∆, yielding x‡ : ∆‡"S ‡,

!x‡ "! ·σ‡ ≡ ! (σx)‡ "" : (γ : !Γ"C) → El (S ‡ (σ‡ γ))

Then, whenever ∆ $ T TYPE T ‡ : !∆‡ "C → U
we have (σT)‡ ≡ T ‡ ·σ‡ : !Γ‡ "C → U.
Moreover, if

∆ $ t : T T ‡ : !∆‡ "C → U t‡ : (δ : !∆‡ "C) → El (T ‡ δ)

then (σt)‡ ≡ t‡ ·σ‡ : (γ : !Γ‡ "C) → El (T ‡ (σ‡ γ))

We may immediately note that substituting for the topmost free
variable is a special case.

Proof of Proposition 1. When we have Γ $ s : S, with suitable
translations to Agda, take

∆ = Γ, x :S σ = [s/x] σ‡ γ = γ, s‡ γ

Note that for variable x† = top,

!top"! (γ, s‡ γ) ≡ s‡ γ

and for other variables y† = pop i , with σ y† = i

!pop i "! (γ, s‡ γ) ≡ ! i "! γ

Apply Proposition 3. "
Now let us prove the general case.

Proof of Proposition 3. We proceed by induction on the syntax
of KIPLING. The Agda typing of the interpretations relies on the
typing of their components, so inductive hypotheses are applicable.
When we pass under a binder, moving from ∆ to ∆, y : R, we
extend Γ to Γ, y′ :σ R, lifting σ to τ = σ ·[y′/y], and lift σ‡ to τ ‡

where

τ ‡(γ, y) = (τ ‡ γ, y)

preserving the required relationship with σ for top by construction
and pop i by our assumption about σ‡.
As the translations are compositional and Agda’s equality is a

congruence, the conclusion for each type- and term-former follows
structurally from the inductive hypotheses. The case for variables is
exactly covered by our assumption about the relationship between
σ and σ‡. "
The upshot is that with constructors reflecting the typing rules

at the level of type meanings, and a compositional interpreter as-
signing term meanings, we acquire a translation from KIPLING to
a type-safe syntax.

9. The Proof of the KIPLING Pudding
Now that we are sure the translation works, let us complete the
proof that the equality test for NAT is reflexive. The construction is
straightforward.

REFL : [PI{-x -} NAT
(TRUE (NATEQ $ VAR{-x -}top $ VAR{-x -}top))]

REFL =
LAM{-x -} (REC{-y-} (VAR{-x -}top)

(TRUE (NATEQ $ VAR{-y-}top $ VAR{-y-}top))
VOID -- TRUE (NATEQ $ ZE $ ZE) = ONE
(LAM{-x -} (LAM{-xq-} (VAR{-xq-}top))))

-- TRUE (NATEQ $ SU x $ SU x)
-- = TRUE (NATEQ $ x $ x)

We may similarly observe that x + 0 = x.

ADDZE : [PI{-x -} NAT
(TRUE (NATEQ $ (ADD $ VAR{-x -}top $ ZE)

$ VAR{-x -}top))]
ADDZE =
LAM{-x -} (REC{-y-} (VAR{-x -}top)

(TRUE (NATEQ $ (ADD $ VAR{-y-}top $ ZE)
$ VAR{-y-}top))

VOID
(LAM{-x -} (LAM{-xq-} (VAR{-xq-}top))))

Finally, let me show that x + SU y = SU x + y.

ADDSU : [PI{-x -} NAT (PI{-y-} NAT (TRUE (NATEQ
$ (ADD $ VAR{-x -}(pop top) $ SU (VAR{-y-}top))
$ SU (ADD $ VAR{-x -}(pop top) $ VAR{-y-}top))))]

ADDSU =
LAM{-x -} (LAM{-y-} (REC{-z -} (VAR{-x -}(pop top))

(TRUE (NATEQ
$ (ADD $ VAR{-z -}top $ SU (VAR{-y-}(pop top)))
$ SU (ADD $ VAR{-z -}top $ VAR{-y-}(pop top))))

(REFL $ SU (VAR{-y-}top))
(LAM{-x -} (LAM{-xq-} (VAR{-xq-}top)))))

These proofs all rely on type-level computation, and they all
check. There is a considerable performance penalty induced by the
layer of translation, but the encoding demonstrably works.

10 2010/6/8

10. Discussion
This paper is a contribution to the practice of programming with
dependent types, allowing ‘domain-specific language’ techniques
to be applied to more precise languages. Whilst the current imple-
mentation, available online via
darcs get http://personal.cis.strath.ac.uk/~conor/DepRep

is rather slow, the full power of partial evaluation in compilation
stands at the ready [Brady and Hammond 2010].
It is also a technical contribution to the practice of formal

metatheory for dependent type systems, in the tradition of Barras
[1996, 1999]; Barras and Werner [1997]; McKinna and Pollack
[1993, 1999]; Pollack [1994]. Where these formalisations start
from untyped representations of dependently typed terms, we now
have a technique for type-safe representation, in the manner of
Danielsson [2006] and Chapman [2009], but with type equality
silently resolved by the host language.
We have successfully encoded KIPLING, a minimal dependently

typed language in a type safe manner and checked that all KIPLING
judgments hold in translation. The key ingredients were
1. a universeU of Agda types corresponding to canonical KIPLING
types, defined by induction-recursion, just as Dybjer and Setzer
[1999] taught us, allowing interpretation of KIPLING types Γ $
T TYPE as ‘shallow types’—Agda functionsT‡ : !Γ‡ "C → U;

2. de Bruijn indices, just as Altenkirch and Reus [1999] taught us,
indexed by shallow types—weakening is just· fst;

3. a first-order deep embedding of KIPLING types, indexed to
express representability of shallow types, just as Crary et al.
[1998] taught us;

4. mutually defined with the latter, a first-order syntax of ‘deep’
terms, indexed by shallow types, so that convertability of deep
types is supplanted by coincidence of shallow types—that is
what I am teaching;

5. a tagless interpreter, as Augustsson and Carlsson [1999] taught
us, taking deep terms Γ $ t : T to their shallow counterparts
! t† "" : (γ : !Γ‡ "C) → El (T ‡ γ), used crucially to construct
shallow dependent types.
The mutual definition of types, terms and their values, by in-

dexed induction-recursion [Dybjer and Setzer 2001], reflects ex-
actly the presence of types in terms and terms computing in types
that we need to define dependently typed calculi.
The technique is thus adaptable to a variety of languages, but

with at least one note of caution: we are at the mercy of the defi-
nitional equality in the host language. On the one hand, we cannot
expect to model a theory—the proof-irrelevant Observational Type
Theory [Altenkirch et al. 2007], for example—whose definitional
equality is strictly (or rather, lazily) more generous than Agda’s.
On the other hand, we are obliged to accept the generosity of our
host, whether we like it or not! For example, the η-law holds for
KIPLING functions, without us asking for it.

F1 : [PI (PI NAT NAT) (PI NAT NAT)]
F1 = LAM (LAM (VAR (pop top) $ VAR top))

F2 : [PI (PI NAT NAT) (PI NAT NAT)]
F2 = LAM (VAR top)

FEQ : ! F1 {‘E ’}"" ≡ ! F2 {‘E ’}""
FEQ = refl

Another less than ideal aspect of this technique is that, while
we have an interpreter, we have no means to recover a syntactic
presentation of value: we do not have the normalization function.
Modifying the universe construction to admit free variables in the
interpretation of types might provide the means to step up from

evaluation to strong normalization: this is an active topic of further
research. Given a normalization function, we may become free to
choose the definitional equality that we really want for our object
languages, provided we can show that syntactic equality of types’
normal forms ensures an isomorphism between them.
Such considerations aside, it is pleasing at last to seize the

chance to model parts of our own languages, as we have modelled
simply typed ‘clients’ in the past. We now have a new reflective
technology, a new opportunity for generic programming with de-
pendent types. If you can dream, and not make dreams your master,
the prospects for progress are exceedingly good.

References
T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In J. Flum and M. Rodrı́guez-Artalejo,
editors, CSL, volume 1683 of Lecture Notes in Computer Science, pages
453–468. Springer, 1999. ISBN 3-540-66536-6.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now!
In A. Stump and H. Xi, editors, PLPV, pages 57–68. ACM, 2007. ISBN
978-1-59593-677-6.

L. Augustsson and M. Carlsson. An exercise in de-
pendent types: A well-typed interpreter. Available at
http://www.cs.chalmers.se/ augustss/cayenne/interp.ps,
1999.

A. I. Baars and S. D. Swierstra. Type-safe, self inspecting code. In Haskell
’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 69–79, New York, NY, USA, 2004. ACM. ISBN 1-58113-850-
4. doi: http://doi.acm.org/10.1145/1017472.1017485.

B. Barras. Coq en coq. Rapport de Recherche 3026, INRIA, Oct. 1996.
B. Barras. Auto-validation d’un système de preuves avec familles induc-

tives. Thèse de doctorat, Université Paris 7, Nov. 1999.
B. Barras and B. Werner. Coq in coq.

http://pauillac.inria.fr/ barras/coqincoq.ps.gz, 1997.
E. Brady and K. Hammond. A verified staged interpreter is a verified
compiler. In S. Jarzabek, D. C. Schmidt, and T. L. Veldhuizen, editors,
GPCE, pages 111–120. ACM, 2006. ISBN 1-59593-237-2.

E. Brady and K. Hammond. Scrapping your Inefficient Engine: using Partial
Evaluation to Improve Domain-Specific Language Implementation,. In
ICFP 2010. ACM, 2010. To appear.

J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless, partially evalu-
ated: Tagless staged interpreters for simpler typed languages. J. Funct.
Program., 19(5):509–543, 2009.

J. Chapman. Type theory should eat itself. Electr. Notes Theor. Comput.
Sci., 228:21–36, 2009.

J. Chapman. Type checking and normalisation. PhD thesis, University of
Nottingham, 2008.

J. Chapman, P. Dagand, C. McBride, and P. Morris. The gentle art of
levitation. In ICFP 2010. ACM, 2010. To appear.

C. Chen and H. Xi. Meta-programming through typeful code representa-
tion. In C. Runciman and O. Shivers, editors, ICFP, pages 275–286.
ACM, 2003. ISBN 1-58113-756-7.

K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism in
type-erasure semantics. In ICFP, pages 301–312, 1998.

H. B. Curry and R. Feys. Combinatory Logic Volume I. Amsterdam, 1958.
L. Damas and R. Milner. Principal type-schemes for functional program-
ming languages. In Ninth (Albuquerque, NM), pages 207–212. ACM,
January 1982.

N. A. Danielsson. A formalisation of a dependently typed language as an
inductive-recursive family. In T. Altenkirch and C. McBride, editors,
TYPES, volume 4502 of Lecture Notes in Computer Science, pages 93–
109. Springer, 2006. ISBN 978-3-540-74463-4.

N. G. de Bruijn. Lambda Calculus notation with nameless dummies: a tool
for automatic formula manipulation. Indagationes Mathematicæ, 34:
381–392, 1972.

11 2010/6/8

N. G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Infor-
mation and Computation, 91:189–204, 1991.

P. Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory. In
G. Huet and G. Plotkin, editors, Logical Frameworks. CUP, 1991.

P. Dybjer and A. Setzer. Indexed induction-recursion. In R. Kahle,
P. Schroeder-Heister, and R. F. Stärk, editors, Proof Theory in Computer
Science, volume 2183 of Lecture Notes in Computer Science, pages 93–
113. Springer, 2001. ISBN 3-540-42752-X.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, TLCA, volume 1581 of Lecture Notes
in Computer Science, pages 129–146. Springer, 1999. ISBN 3-540-
65763-0.

F. Forsberg and A. Setzer. Inductive-inductive definitions. 10pp. Submitted
to LICS 2010, 2010.

R. Harper, F. Honsell, and G. D. Plotkin. A framework for defining logics.
J. ACM, 40(1):143–184, 1993.

G. Huet and G. Plotkin, editors. Electronic Proceedings of the First Annual
BRA Workshop on Logical Frameworks (Antibes, France), 1990.

G. P. Huet. A unification algorithm for typed lambda-calculus. Theor.
Comput. Sci., 1(1):27–57, 1975.

T. Johnsson. Lambda Lifting: Transforming Programs to Recursive Equa-
tions. In J.-P. Jouannaud, editor, Functional Programming Languages
and Computer Architecture, volume 201 of LNCS, pages 190–203, 1985.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.
C. McBride. Dependently Typed Functional Programs and their Proofs.
PhD thesis, University of Edinburgh, 1999.

C. McBride and J. McKinna. The view from the left. J. Funct. Program.,
14(1):69–111, 2004.

C. McBride and R. Paterson. Applicative programming with effects. J.
Funct. Program., 18(1):1–13, 2008.

J. McKinna and R. Pollack. Pure type systems formalized. InM. Bezem and
J. F. Groote, editors, TLCA, volume 664 of Lecture Notes in Computer
Science, pages 289–305. Springer, 1993. ISBN 3-540-56517-5.

J. McKinna and R. Pollack. Some lambda calculus and type theory formal-
ized. J. Autom. Reasoning, 23(3-4):373–409, 1999.

D. Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. J. Log. Comput., 1(4):497–536,
1991.

U. Norell. Dependently typed programming in agda. In P. W. M. Koopman,
R. Plasmeijer, and S. D. Swierstra, editors, Advanced Functional Pro-
gramming, volume 5832 of Lecture Notes in Computer Science, pages
230–266. Springer, 2008. ISBN 978-3-642-04651-3.

U. Norell. Towards a Practical Programming Language based on Depen-
dent Type Theory. PhD thesis, Chalmers University of Technology, 2007.

E. Palmgren. On universes in type theory. In Proceedings of the meeting
Twenty-five years of constructive type theory. Oxford University Press,
1998.

E. Pasalic, W. Taha, and T. Sheard. Tagless staged interpreters for typed
languages. In ICFP, pages 218–229, 2002.

B. C. Pierce and D. N. Turner. Local type inference. In POPL, pages 252–
265, 1998.

R. Pollack. Dependently typed records in type theory. Formal Asp. Comput.,
13(3-5):386–402, 2002.

R. Pollack. The Theory of LEGO: A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, Univ. of Edinburgh, 1994. URL
http://homepages.inf.ed.ac.uk/rpollack/export/thesis.ps.gz.

R. Pollack. Implicit syntax. URL
ftp://ftp.dcs.ed.ac.uk/pub/lego/ImplicitSyntax.ps.Z.
An earlier version of this paper appeared in [Huet and Plotkin 1990],
1992.

A. Coda
With a little space left, let me show you a universe construction I
learned from Palmgren [1998], with thanks to Peter Hancock.

Give our existing universe, U, we may make another, very
slightly larger.

data Û : Set where
‘U’ : Û
‘El’ : U → Û

cEl : Û → Set
cEl ‘U’ = U
cEl (‘El’ T) = El T

The Û universe tops up the types from U with a code for U
itself. We can repeat the KIPLING construction, taking Û as the
underlying universe for contexts and shallow types, and now we
may write:

mutual
data ! (Γ : Cx) : (!Γ"C → Û) → Set where
SET : Γ! K ‘U’
EL : (T : Γ $ K ‘U’) → Γ! K ‘El’ S !T ""
ZERO : Γ! K (‘El’ ‘Zero’)
ONE : Γ! K (‘El’ ‘1’)
...

I have added a type of SETs, and the means to interpret terms
of that type as types in the object language. I modify the term
language, accordingly. We shall need to write types as terms, now.

TY : ∀ {T } → Γ! K ‘El’ S T → Γ $ K ‘U’
! TY {T } "" = T

Moreover, I adjust REC to operate on the larger universe, allow-
ing us to compute values in SET. To do so, I must use the variable
binding technique, as Û contains U, but not N → U, for example.

REC : ∀ {P }
→ (n : Γ $ K (‘El’ ‘N’))
→ Γ, K (‘El’ ‘N’)!P
→ Γ $ ΛP S Kze
→ (Γ, K (‘El’ ‘N’)),P $ V (Vλ γ n h → P (γ, su n))
→ Γ $ ΛP S !n ""

!REC {P } n z s "" = Krec S !n "" S Λ(cEl ·P)
S !z "" S λ γ n h → !s "" ((γ,n), h)

In an unforgiving minute, we have run far from KIPLING and
the power of IF alone. We may now, for example, define vector-
like structures—here, just vectors of numbers.

VEC : ∀ {Γ} → (n : Γ $ K (‘El’ ‘N’)) → Γ!
VEC n = EL (REC n SET

(TY ONE)
(TY (SG NAT (EL (VAR (pop top))))))

Here, for example, is the function which computes the decreas-
ing sequence of the numbers below its input.

COUNTDOWN : [PI NAT (VEC (VAR top))]
COUNTDOWN = LAM (REC (VAR top) (VEC (VAR top))
VOID
(VAR (pop top) & VAR top))

And so, let us blast off into the universe. . .

12 2010/6/8

