banner above paper title

Slicing It
Indexed Containersin Haskell (Programming Pearl)

Conor McBride

University of Strathclyde
conor@cis.strath.ac.uk

Abstract
This is the text of the abstract.

Categories and Subject Descriptors CR-number $ubcategory
third-level

General Terms termi, term2
Keywords keyword1, keyword2

1. Introduction

This paper is about datatypes in Haskell. In particularpitaerns
container-like data—structures parametrized by a notibrele-

ment like lists, labelled trees, expressions (where ‘elemeés/

the role of variables) and many others. In Haskell, suctctires
are often manifested agpe constructorsf kind « — *, and made
instances of th&€unctor type class:

class Functor (¢ :: * — *) where
fmap :: (¢ —) — (b x — ¢ B)

where thefmap method supports the systematic transformation of
elements without disturbing the structure in which they sit

Here, however, | investigate what happens if we index the con
tainer structures (lists with length, trees with heightpte with
type) but also the notions of element (typed variables iredyp
terms, the different sorts of substructure in a labelle@ rtose). If
we want to gather these creatures and equip them with their co
mon structure, we shall need a new type class,

class IFunctor (¢ :: ({t} — %) — ({0} — %)) where ...

for type constructors taking indexed sets to indexed setsl Bish
ahead too quickly: we shall need to think afresh about indeets,
their kinds and their uses, if we are to develop good toolss Th
paper contributes

e an extension of Haskell's kind system wilifted types e.g.
{Either o 3}, suitable for describing types indexed by data,

1There are instances dfunctor which do not have ‘elements in po-
sitions’ and are thus not containers — continuations are dlzes-
sic example. Grasping the notion of position is easy with etlep
dent types [Abbott et al.(2005)Abbott, Altenkirch, and @abut ugly in
Haskell, so | defer its treatment until Haskell improves.

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

short description of paper

and the corresponding extension of types ifted terms e.g.
{L a}, {R b}, and just the correspondimmplymorphism

e a type clasdFunctor, slicing Functor into its polymorphic
collection of indexed counterparts;

e a repertoire ofFunctor instances, closed not only under iden-
tity, composition, sum, and product, but also unéiepoints
suitable for developing generic operations on mutuallyraefi
collections of GADTS;

e a peek at the corresponding notionlbfonad, and its relation-
ship with the “parametrized monads” popularised by Atkeg an
others P);

e a translation from the language extensions in this papek bac
to GHC Haskellhow, forgetting discipline but preserving func-
tionality.

The code in this paper may look like fantasy Haskell, butlit al
compiles with help from th&trathclyde Haskell Enhancemdft,
a preprocessor for the Glasgow Haskell Compiler. SHE comes b
dled with this paper’s examples, and a variety other expants

1.1 Some Related Work

More detailed discussion of related work must necessanibjtats
technical context, but | feel | should acknowledge my priyrdebts
on the front page.

The programs in this paper builds on the theoretical study of
indexed containerby Altenkirch, Morris, and colleague8][They
show that Haskell, viewed through a suitable lens, alreaaly h
enough dependent types to exploit many of the insights ofritia
seam of research.

As an exercise in modelling collections of datatypes, thiskw
owes much to the ‘Oxford origami’ style of generic programgyi
based on folds and unfolds for fixpoints at functors of vasiou
arities, and so on? ?]. Indexing allows us to abstract uniformly
over the arities and simplify the general treatment: one,map
fold, one unfold.

Indeed, Rodriguez, Holdermans, Jeuring, and Ldh have ishow
how to to model bunches of mutually defined simple types by
taking fixpoints atkind* — %) — (x — *) [?]. This paper can be
seen as a refinement of the basic idea behind their work, ginayi
a tighter analysis of ths kinds involved, a local fixpoint mer
rather than top-level recursion, and a generalization t®&#

1.2 Overview

| begin with revision of essential background material: daof
exponentiation (i.e., index manipulation), Haskell's kigystem,
the fixpoints-of-functors presentation of recursive dgias and
the fixpoints-of-bifunctors presentation of recursivedians. | then
explore the connection between mutual recursion and GADTSs.
Together, these motivate the generalization to indexedtfus:

1 2009/7/13

| explore some specific examples, and some generic technolog
With a look ahead to the technology which seems likely to gmer
as a consequence of shifting to the indexed world, | conclude

2. Watch Out for Exponentials!

Let me remind you of some laws of exponentials from high sthoo
algebra:

1=X°

X =Xx!
X*x XB = xo+tp
(XLX)[S :XLXX[S

These laws (viewed left-to-right) show how to express vaio
formulae as exponentials. At various points in our jourmeyshall
need to do just that, shifting structure into the exponesdourage
you to watch out for opportunities to exponentiate. In Hilske
however, the exponentidl * is more likely to be a function space
o« — X, and the exponents types likéoid (the type with no
defined values),), Either « 3, («, 3). Itis nothing new to do high
school algebra with types, but the twist here will be to deeblg
with kinds— the X in this paper will sometimes be the kind
which types inhabit. How can a type be the exponent of a kind?
Haskell's kinds are given by the simple grammar

K=%|K—K

giving kinds for types and type constructors. Perhaps we meay
to increase the power of the kind system.

3. Functor, Fix, fmap, fold

Let us recall the construction of recursive datatypes a®iimp of
polynomial functors. For example, consider the simple tgpgaof
expressions with integers and addition:

data Exp = Val Int | Add Exp Exp

We can equiExp with a fold (or iterator, or catamorphism) ex-
plaining how to compute a value infrom anExp, given an alter-
nativet-based implementation &fal andAdd.

foldgxp :: (INt > 1) > (T—>T—1) > Exp— 7
foldexp v @ (Val i) =1
foldexp v @ (Add s t) = a (foldeg v a s) (foldex v a t)

The recipe forfold is ‘for each constructor, applfpld recursively
to the substructures, then process the results with thenattee
implementation’. We can express this recipe directly, ifoaa find

a way to address the ‘substructures’ uniformly. One way tthi

is to express the definition &xp as a container of its substructures,
yielding a type constructor which is readily made an instawicthe
Functor class, so thaffmap means ‘apply to substructures’.

data ExpF « = ValF Int | AddF o
instance Functor ExpF where

fmap f (ValF i) = ValF

fmap f (AddF s t) = AddF (f s) (f t)

We can recover ouExp type as theExpF instance of ageneral
fixpoint construction

newtype Fix ¢ = In (¢ (Fix ¢))

type Exp = Fix ExpF
pattern Val : = In (ValF i)
pattern Add s ¢t = In (AddF s t)

| have added sompattern synonym$o show we code the orig-
inal constructors, now that containment and recursion Hheeen
separated. Pattern synonyms, first proposed by Aitken apgyRe

short description of paper

[Aitken and Reppy(1992)], are non-recursive definitionsogd
right-hand sides are restricted to be patterns, lineardarvéniables
bound on the left. SHE supports pattern synonyms, fullyiedph
patterns, and partially applied in expressions.

Now that we have rebuilExp, we can equip it with specific
functionality just as before. However, we detde,, for free, by
instantiating the gener&bld — an ‘alternativer-based implemen-
tation’ becomes a single function ih T — T, sometimes called a
¢$-algebra with carriert.

fold :: Functor ¢ = (p 1 — 1) - Fixp — 7
fold f (In rs) = f (fmap (fold f) rs)

Pattern synonyms are not official Haskell, but the notaticoa-
venience they lend this compositional approach to datatsires
is too good to miss. We can even go further, rebuildiirgF from
the polynomial functor kit

newtype | a=1lu«

newtype K © a=Krt

newtype (:+:) ¢ 0 o = Sum (Either (¢ «) (0 «))
newtype (:x:) ¢ 0 o« = Prod (¢ «, 0 «)

type ExpF =Kint +:|:x:1
pattern ValF ¢ = Sum (L (K 7))
pattern AddF s t = Sum (R (Prod (I 5,1 t)))

This kit generates any one-parameter type constructondivea
polynomial in one variable. By declaring a fixed set of insts) we
can show that all of these polynomials have lots of usefukstire:
they all preserve decidability of equality, they are alfeiéntiable,
they areFunctors andTraversable to boot!

Exercise. Usenewtype isomorphism and the laws of expo-
nentiation to show that our two versionsfofde,, have isomorphic
types, i.e., that

(Int—1)—>(t—>1—1) —Exp—1
=(ExpFt—1)—2Exp—r

4. Refunctor Your Bifactor

Fixpoints of polynomials in one variable are good for comstr
ing recursive types, but what if we want to construct remersi
parametrized types, making clear that they are functorsZake
already define lists as follows:

type ListFa =K():+: Ko:x:l
type List « = Fix (ListF o)
pattern Nil =Sum (L (K ()))

pattern Cons z zs = Sum (R (Prod (K z, | xs)))

This entitles us tdold for lists, but it does not give us dmap to
lift operations orelementsRather,ListF « is seen as a container
only of sublists The fix for this problem is standar@,[?]: switch
to working with containers fotwo sorts of data, ‘elements’ and
‘sublists’. We shall need thBifunctor kit. The Bifunctor class

class Bifunctor (¢ :: * — * — x) where
bimap: (a > &) > (B —B)—dbaB — o p
is closed under the following constructions:

newtype Fst «=Fsta
newtype Snd xf=5Sndp
newtype Ko T apfp=Kot

newtype (:-+:) ¢ 0 « 3 = Sumg (Either (¢ «) (0 « f3))
newtype (:xx:) ¢ 0 « 3 = Prod2 (b « 3,0 «)

Now we can expose the container structure of lists:
type ListB = K3 () :++: Fst :xx: Snd

2 2009/7/13

yielding

~

ListB & oo Either () («, xo)

To get recursive parametrized datatypes, we take the fikpbthe
bifunctor in its second argument, retaining the first argonas a
parametef:

newtype PFix ¢ o = PIn (¢ « (PFix ¢ «))
Now we can finish our construction of lists:

type [] = PFix ListB

pat [] =Pl (Sums (L (K2 ())))

pat z:zs = Pln (Sumz (R (Prodz (Fst z,Snd zs))))

The payoff from our bifunctorial construction is that we dth
‘map’ and ‘fold’, once for all.

pfold :: Bifunctor ¢ = (¢ x T — 1) = PFixp « — T
pfold f (PIn zrs) = f (bimap id (pfold f) zrs)

instance Bifunctor ¢ = Functor (PFix ¢) where
fmap f (PIn 2rs) = PlIn (bimap f (fmap f) zrs)

We shall revisit this construction later, in generalizeafoThe key
point is to distinguish the ‘recursive stuff’ bound by thepint
from the ‘parametric stuff’ over which we should still expéc be
functorial.

Except occasionally and by accident, | am not a categorytheo
rist, but if | were, | should be a little disturbed by this rignole.
| might point out that a bifunctor ijst® a functor from a product
category. It is perhaps a little hasty of Haskellers to sghadame
Functor on only the endofunctors of the categorywhen there
surely are other Haskell categories, and functors betwean.t

But perhaps we might recover the functorial natur8idinctor
with a bit of algebra. The laws of exponentiation suggest tha
we might recover the treatment via product categories i oveg
had product kinds. However, we have only exponentials. Widco
replacex x x by an exponential

~

¥ — ok — ok 2 (k%) — * ({Bool} — %) — x

if only we had a kind{ Bool } with two inhabitants{ T} and{F}.
Let's just pretend, for now, thafBool} exists. To rebuild the
Bifunctor machinery, we shall need to pack up any pair of types
as a{Bool }-indexed type. We can do this with a GADT playing
the role ofif ... then ... else..., but with the condition coming last.

data (:7:) :: * — x — {Bool } — swhere
InT:t— (¢:7: /) {T}
InF:: f — (t:7: f){F}
Correspondingly, we can pack up a pair of functions asdex-
preservingfunction between the correspondifigrFs.

(<) (= &) — (B — B)
(a7 B)b— (o BB

(tr <> fa) (InT t) = InT (¢r t)

(tr <> fa) (InF f) = InF (fa f)

These index-preserving functions provide us with an apjeitg
notion of morphism between indexed types. Let us name them:

typeoc - 1=Vi.0oi—Ti

Conveniently, we have thid :: 0 — o, and thatiff :: 0 — T
andg :: p — o, thenf. g :: p — t. This composition is, of
course, associative and absoith®n either side. We may consider

2TheP in PFix is silent.
3This is the ‘categorical’ just, which acts like cyanide ipidoptery.

short description of paper

{Bool} — * with - to be a category! Let us be tidy, and observe
that

(<) (a—=o) > (P —Pp)— a7 p —o 7P

We are now in a position to sd®ifunctors as functors between
{Bool} — x andx —we must explain how to take~ morphisms
and return ordinary functions.

class BooFunctor (¢ :: ({Bool} — %) — x) where
boomap:: (0 — 1) = (b o — b 1)

This looks just like the declaration fdfunctor, except that we
have different source and target categories, and we uselthant

morphisms for each. When we builBooFunctors, we use the
choice of index to select which sorts of substructure to putns.

Here,ListBoo does the same job &sstB, with { T } indicating list

element positions anfF } indicating positions for sublists.

data ListBoo :: ({Bool } — %) — xwhere
NilBoo :: ListBoo T
ConsBoo :: T {T} — T {F} — ListBoo T
instance BooFunctor ListBoo where
boomap tf NilBoo = NilBoo
boomap ¢f (ConsBoo z xs) = ConsBoo (tf z) (if xs)

Note thattf must be polynorphic enough to be used on substruc-
tures of either kind — that is, it must actually represent & ph
functions, just as ibimap.

If you suspect thaBooFunctor looks too specific to be the ba-
sis of a good library, you would be righBooFunctor is just a
refactoring ofBifunctor, using indexing to collect the two param-
eters. We could readily replagdBool } with { Maybe Bool } if we
wanted a third parameter, but it might be preferable not te e
furtherclass MayBooFunctor to capture the appropriate structure.
We shall clearly need to look for a suitable generalizat®efore
we do so, however, let us look at another opportunity for xip

5. Mutual Datatypesas|ndexed Structures

We have just seen how indexing the parameter to a functor imode
multiple sorts of substructure. We may equally well indee th
‘output’ of a functor to model multiple sorts of superstiurg, in

a single definition. Mutually defined datatypes, and mudtited
syntaxes in particular, can be seen this way. My particaleodrite
example is the definition of locally namelesserms in3-normal
form, with de Bruijn indices for bound variable¥dr), but no
commitment to a particular representation of free varialfar).

data Norm :: x — xwhere
Lam :: Norm £ — Norm z

Neu :: Neut x — Norm z

data Neut :: ¥ — xwhere
Par 1z — Neut z
Var :Int — Neut z

App :: Neut £ — Norm z — Neut z

We have two type constructors of kind— x*, but we can use a
little algebra to express the pair as a single exponential.

(k= #,% — %) 2 x> (x,%) = x — ({Bool} —)

This suggests that we might combine the two branches of our
definition into one, sharing the ‘variables’ parameter ashg a
{Bool } index to distinguisiNorm ({ T }, say) fromNeut.

data NorN :: * — ({Bool } — %) where

Lam: NorN z {T} — NorN z {T}
Neu :: NorN z {F} — NorN z {T}
Par @z — NorN z {F}
3 2009/7/13

Var :Int — NorN z {F}
App ::NorN z {F} — NorN z {T} — NorN z {F}

We can sedNorN as a functor fromk to {Bool} — x whose
action is simultaneounaming lifting functions on free variables
to functions on terms which respect syntactic structurepmasgerv-
ing their status as normal or neutral. Bound variables dieurse,
unaffected.

rename :: (¢ — 3) — (NorN & - NorN f3)

rename r (Lam ¢) = Lam (rename r t)

rename 7 (Neu ¢) = Neu (rename 7 t)

rename r (Par) = Par (r z)

rename r (Vari) = Vari

rename 7 (App f s) = App (rename r f) (rename r s)

Of course, the above representation fails to enforce theessafping

of bound variables. The traditional remedy is also an ircstanf
indexing. Given a typdéNat of natural numbers with constructors
Z andS, we may imagine defining finite sets of bounded numbers
according to venerable tradition, in whi¢tin {Z} is empty and
Fin {S n} has one element more th&im {n }.

data Fin :: {Nat} — xwhere
FZ :: Fin {S n}
FS::Fin {n} — Fin {S n}

Now we can make our definition guarantee scope:
data NN :: x — ({Nat, Bool } — x) where

Lam:=NNz {Sn, T} — NNz {n, T}
Neu :: NN z {n,F} — NNz {n, T}
Par =z — NNz {n,F}
Var ::Fin{n} — NN z {n,F}
App::NNz {n,F} = NNz {n, T} = NNz {n,F}

We have stepped beyond the realm of mutually defined simpéssty
— NN cannot be ‘demutualized’ into finitely many unindexed
definitions. This should give us reason to hoipe that a poledi
approach to indexed data structures might deliver more jirsin
a model of simple mutual definitions, as found #.[But so far,

| have been rather casual in adding type-like kinds to thigepa
local dialect of Haskell. It is high time | was at least precis my
wishful thinking.

6. TheBracesof Upward M obility

The Glasgow Haskell Compiler currently extends the Has®@|l
standard significantly, supporting in particular the dextian of
Generalized Algebraic DataTypes (GADTSs), a form of what de-
pendent type theorists still call ‘inductive families’ whéhey are
talking amongst themselves. However, in order to maintarsep-
aration of terms from types, GHC requires that GADTs arexade
by type-level stuff and have kinds built fromand —.

Let me propose a little Strathclyde Haskell Enhancement. |
extend the syntax of kinds as follows

K= %
| {t}
| kK — K
| Yok k

wheret denotes the syntactic category of types. Thé construct
lifts a typer to the kind level, allowing it to be used as an index. The
kind { Nat, Bool } | wrote above is just a little sugar for the lifted
pair type{ (Nat, Bool) }. However, with this increased diversity at
the kind level comes the need for polymorphism. Correspugigi

let us permit quantification over inhabitants of kinds. Nttat
the latter falls far short okind polymorphismabstracting kinds

short description of paper

themselves. The variablesbound by the quantifier live at the type
level, and can thus only be used inside }.

Lifted types are inhabited by lifted expressions, but befmny-
one starts panicking about dependent types in Haskell, asthny
about not needing them, let me be quite clear that this is enhmuc
more modest proposal. In order to retain essentially theesgpe
inference technology we use today, let us be sure that thesxp
sions we lift

1. are guaranteed to terminate;
2. admit first-order unification.

One fragment of the expressions which clearly satisfiesethes
criteria consists of just those which can be built from Vialéa and
fully applied value constructors. Let us extend the typgleamye

T= ..
| {v}
v=u1
| Cv*

Thesev-forms are the very stuff of first-order unification, and
they do not compute at all, let alone for ever. Greater ambiti
is to be encouraged in the long term, but | shall choose to be
patient in this paper. Let me also assure you that the vasabl
permitted inv-forms arenot the program variables in scope, but
rather thev-bound type-level variables which happen to inhabit
{7} kinds. Correspondingly, we retain the separation of rometi
and type-level values for the time being, even if the re-uke o
notation suggests otherwise, and nods towards strongeibiiies
in future.

With this extension in place, it becomes harder to impress yo
friends by faking type-level copies of value-level data. ¢ just
use plain old data and get along. So let us not be distracted by
coding tricks any longer, and get to work.

7. Slice Categories, |ndexed Functors

I can only learn category theory by accident, discoverirag $ome
abstruse phrase of the categorical taxonomy connects te som-
putational intuition with which | am already at home: the dof
the categorical just is the programmer’s tlgat what they’re on
about?'. In that spirit, let me try to equip the working Haskeo-
grammer with some helpful categorical kit in tandem withcidsn-
putational payoff.

For a given categor¢ — think of « in the first instance — let
us write

a::C
to indicate thatx is anobjectof C and thatf is anarrow from object

o to objectt. For C to be a category, we require the existence of
identities and composites

fro—1

o:C
idi:a— o

fro—-1T gup—o
fogup—r

satisfying the usual trio of laws:
foid=f (fog)oh=fo(goh)

Now pick an ‘index’ objectt :: C. The slice categoryC / t
has ‘objects with indexing’, and ‘index-preserving arrawEhat
is, each object of / v is an object ofC equipped with &C-arrow
to , and the arrows between two such indexed objects are exactly
the arrows on the underlying objects which happen to preserv
indexing.

idog=gyg

fuio—oT tof=s

f(o,8) — (T,¢)

x:C a:za—1

(e,a):C /1

4 2009/7/13

It is not hard to check thatl :: (x,a) — («, a), and thatf o ¢
preserves indexing if botfiandg do.

In a language with dependent pairs and equality types, it is

straightforward to code up slices for the category of typed a
functions: an object is the dependent pair of a typeand an

indexing function froma; an arrow is the dependent pair of a

function f and the proof thaf preserves index.

Our category of indexed type constructersr :: {1} — x and
index-preserving functiong :: o - t performs the role of/.
without the need

A. Appendix Title
This is the text of the appendix, if you need one.

Acknowledgments
Acknowledgments, if needed.

References

[Abbott et al.(2005)Abbott, Altenkirch, and Ghani] Michadbbott,
Thorsten Altenkirch, and Neil Ghani. Containers - congtngc
strictly positive types. Theoretical Computer Scienc842:3-27,
September 2005. Applied Semantics: Selected Topics.

[Aitken and Reppy(1992)] William Aitken and John Reppy. A&hbst value
constructors. Technical Report TR 92-1290, Cornell Ursiitgr 1992.

short description of paper

2009/7/13

