
banner above paper title

Slicing It
Indexed Containers in Haskell (Programming Pearl)

Conor McBride
University of Strathclyde
conor@cis.strath.ac.uk

Abstract
This is the text of the abstract.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
This paper is about datatypes in Haskell. In particular, it concerns
container-like data—structures parametrized by a notion of ele-
ment, like lists, labelled trees, expressions (where ‘elements’ play
the role of variables) and many others. In Haskell, such structures
are often manifested astype constructorsof kind ∗ → ∗, and made
instances of theFunctor type class:

class Functor (φ :: ∗ → ∗) where

fmap :: (α → β) → (φ α → φ β)

where thefmap method supports the systematic transformation of
elements without disturbing the structure in which they sit.1

Here, however, I investigate what happens if we index the con-
tainer structures (lists with length, trees with height, terms with
type) but also the notions of element (typed variables in typed
terms, the different sorts of substructure in a labelled rose tree). If
we want to gather these creatures and equip them with their com-
mon structure, we shall need a new type class,

class IFunctor (φ :: ({ι} → ∗) → ({o} → ∗)) where ...

for type constructors taking indexed sets to indexed sets. But I rush
ahead too quickly: we shall need to think afresh about indexed sets,
their kinds and their uses, if we are to develop good tools. This
paper contributes

• an extension of Haskell’s kind system withlifted types, e.g.
{Either α β}, suitable for describing types indexed by data,

1 There are instances ofFunctor which do not have ‘elements in po-
sitions’ and are thus not containers — continuations are theclas-
sic example. Grasping the notion of position is easy with depen-
dent types [Abbott et al.(2005)Abbott, Altenkirch, and Ghani], but ugly in
Haskell, so I defer its treatment until Haskell improves.

[Copyright notice will appear here once ’preprint’ option is removed.]

and the corresponding extension of types withlifted terms, e.g.
{L a }, {R b}, and just the correspondingpolymorphism;

• a type classIFunctor, slicing Functor into its polymorphic
collection of indexed counterparts;

• a repertoire ofIFunctor instances, closed not only under iden-
tity, composition, sum, and product, but also underfixpoints,
suitable for developing generic operations on mutually defined
collections of GADTs;

• a peek at the corresponding notion ofIMonad, and its relation-
ship with the “parametrized monads” popularised by Atkey and
others [?];

• a translation from the language extensions in this paper back
to GHC Haskellnow, forgetting discipline but preserving func-
tionality.

The code in this paper may look like fantasy Haskell, but it all
compiles with help from theStrathclyde Haskell Enhancement[?],
a preprocessor for the Glasgow Haskell Compiler. SHE comes bun-
dled with this paper’s examples, and a variety other experiments.

1.1 Some Related Work

More detailed discussion of related work must necessarily await its
technical context, but I feel I should acknowledge my primary debts
on the front page.

The programs in this paper builds on the theoretical study of
indexed containersby Altenkirch, Morris, and colleagues [?]. They
show that Haskell, viewed through a suitable lens, already has
enough dependent types to exploit many of the insights of that rich
seam of research.

As an exercise in modelling collections of datatypes, this work
owes much to the ‘Oxford origami’ style of generic programming,
based on folds and unfolds for fixpoints at functors of various
arities, and so on [?, ?]. Indexing allows us to abstract uniformly
over the arities and simplify the general treatment: one map, one
fold, one unfold.

Indeed, Rodriguez, Holdermans, Jeuring, and Löh have shown
how to to model bunches of mutually defined simple types by
taking fixpoints at kind(∗ → ∗) → (∗ → ∗) [?]. This paper can be
seen as a refinement of the basic idea behind their work, providing
a tighter analysis of ths kinds involved, a local fixpoint operator
rather than top-level recursion, and a generalization to GADTs.

1.2 Overview

I begin with revision of essential background material: laws of
exponentiation (i.e., index manipulation), Haskell’s kind system,
the fixpoints-of-functors presentation of recursive datatypes and
the fixpoints-of-bifunctors presentation of recursive functors. I then
explore the connection between mutual recursion and GADTs.
Together, these motivate the generalization to indexed functors:

short description of paper 1 2009/7/13

I explore some specific examples, and some generic technology.
With a look ahead to the technology which seems likely to emerge
as a consequence of shifting to the indexed world, I conclude.

2. Watch Out for Exponentials!
Let me remind you of some laws of exponentials from high school
algebra:

1 = X0

X = X1

Xα × Xβ = Xα+β

(Xα)β = Xα×β

These laws (viewed left-to-right) show how to express various
formulae as exponentials. At various points in our journey,we shall
need to do just that, shifting structure into the exponent. Iencourage
you to watch out for opportunities to exponentiate. In Haskell,
however, the exponentialXα is more likely to be a function space
α → X, and the exponents types likeVoid (the type with no
defined values),(), Either α β, (α, β). It is nothing new to do high
school algebra with types, but the twist here will be to do algebra
with kinds — the X in this paper will sometimes be the kind∗
which types inhabit. How can a type be the exponent of a kind?
Haskell’s kinds are given by the simple grammar

κ = ∗ | κ → κ

giving kinds for types and type constructors. Perhaps we mayneed
to increase the power of the kind system.

3. Functor, Fix, fmap, fold

Let us recall the construction of recursive datatypes as fixpoints of
polynomial functors. For example, consider the simple datatype of
expressions with integers and addition:

data Exp = Val Int | Add Exp Exp

We can equipExp with a fold (or iterator, or catamorphism) ex-
plaining how to compute a value inτ from anExp, given an alter-
nativeτ-based implementation ofVal andAdd.

foldExp :: (Int → τ) → (τ → τ → τ) → Exp → τ

foldExp v a (Val i) = v i

foldExp v a (Add s t) = a (foldExp v a s) (foldExp v a t)

The recipe forfold is ‘for each constructor, applyfold recursively
to the substructures, then process the results with the alternative
implementation’. We can express this recipe directly, if wecan find
a way to address the ‘substructures’ uniformly. One way to dothis
is to express the definition ofExp as a container of its substructures,
yielding a type constructor which is readily made an instance of the
Functor class, so thatfmap means ‘apply to substructures’.

data ExpF α = ValF Int | AddF α α

instance Functor ExpF where

fmap f (ValF i) = ValF i

fmap f (AddF s t) = AddF (f s) (f t)

We can recover ourExp type as theExpF instance of ageneral
fixpoint construction

newtype Fix φ = In (φ (Fix φ))

type Exp = Fix ExpF

pattern Val i = In (ValF i)
pattern Add s t = In (AddF s t)

I have added somepattern synonymsto show we code the orig-
inal constructors, now that containment and recursion havebeen
separated. Pattern synonyms, first proposed by Aitken and Reppy

[Aitken and Reppy(1992)], are non-recursive definitions whose
right-hand sides are restricted to be patterns, linear in the variables
bound on the left. SHE supports pattern synonyms, fully applied in
patterns, and partially applied in expressions.

Now that we have rebuiltExp, we can equip it with specific
functionality just as before. However, we getfoldExp for free, by
instantiating the generalfold — an ‘alternativeτ-based implemen-
tation’ becomes a single function inφ τ → τ, sometimes called a
φ-algebra with carrierτ.

fold :: Functor φ ⇒ (φ τ → τ) → Fix φ → τ

fold f (In rs) = f (fmap (fold f) rs)

Pattern synonyms are not official Haskell, but the notational con-
venience they lend this compositional approach to data structures
is too good to miss. We can even go further, rebuildingExpF from
thepolynomial functor kit:

newtype I α = I α

newtype K τ α = K τ

newtype (:+:) φ θ α = Sum (Either (φ α) (θ α))
newtype (:×:) φ θ α = Prod (φ α, θ α)

type ExpF = K Int :+: I :×: I

pattern ValF i = Sum (L (K i))
pattern AddF s t = Sum (R (Prod (I s, I t)))

This kit generates any one-parameter type constructor given by a
polynomial in one variable. By declaring a fixed set of instances, we
can show that all of these polynomials have lots of useful structure:
they all preserve decidability of equality, they are all differentiable,
they areFunctors andTraversable to boot!

Exercise. Usenewtype isomorphism and the laws of expo-
nentiation to show that our two versions offoldExp have isomorphic
types, i.e., that

(Int → τ) → (τ → τ → τ) → Exp → τ

≡ (ExpF τ → τ) → Exp → τ

4. Refunctor Your Bifactor
Fixpoints of polynomials in one variable are good for construct-
ing recursive types, but what if we want to construct recursive
parametrized types, making clear that they are functors? Wecan
already define lists as follows:

type ListF α = K () :+: K α :×: I

type List α = Fix (ListF α)
pattern Nil = Sum (L (K ()))
pattern Cons x xs = Sum (R (Prod (K x , I xs)))

This entitles us tofold for lists, but it does not give us anfmap to
lift operations onelements. Rather,ListF α is seen as a container
only of sublists. The fix for this problem is standard [?, ?]: switch
to working with containers fortwo sorts of data, ‘elements’ and
‘sublists’. We shall need theBifunctor kit. TheBifunctor class

class Bifunctor (φ :: ∗ → ∗ → ∗) where

bimap :: (α → α′) → (β → β′) → φ α β → φ α′ β′

is closed under the following constructions:

newtype Fst α β = Fst α

newtype Snd α β = Snd β

newtype K2 τ α β = K2 τ

newtype (:++:) φ θ α β = Sum2 (Either (φ α β) (θ α β))
newtype (:××:) φ θ α β = Prod2 (φ α β, θ α β)

Now we can expose the container structure of lists:

type ListB = K2 () :++: Fst :××: Snd

short description of paper 2 2009/7/13

yielding

ListB α ασ ∼= Either () (α, ασ)

To get recursive parametrized datatypes, we take the fixpoint of the
bifunctor in its second argument, retaining the first argument as a
parameter:2

newtype PFix φ α = PIn (φ α (PFix φ α))

Now we can finish our construction of lists:

type [] = PFix ListB

pat [] = PIn (Sum2 (L (K2 ())))
pat x : xs = PIn (Sum2 (R (Prod2 (Fst x , Snd xs))))

The payoff from our bifunctorial construction is that we getboth
‘map’ and ‘fold’, once for all.

pfold :: Bifunctor φ ⇒ (φ α τ → τ) → PFix φ α → τ

pfold f (PIn xrs) = f (bimap id (pfold f) xrs)

instance Bifunctor φ ⇒ Functor (PFix φ) where

fmap f (PIn xrs) = PIn (bimap f (fmap f) xrs)

We shall revisit this construction later, in generalized form. The key
point is to distinguish the ‘recursive stuff’ bound by the fixpoint
from the ‘parametric stuff’ over which we should still expect to be
functorial.

Except occasionally and by accident, I am not a category theo-
rist, but if I were, I should be a little disturbed by this rigmarole.
I might point out that a bifunctor isjust3 a functor from a product
category. It is perhaps a little hasty of Haskellers to spendthe name
Functor on only the endofunctors of the category∗, when there
surely are other Haskell categories, and functors between them.

But perhaps we might recover the functorial nature ofBifunctor
with a bit of algebra. The laws of exponentiation suggest that
we might recover the treatment via product categories if only we
had product kinds. However, we have only exponentials. We could
replace∗ × ∗ by an exponential

∗ → ∗ → ∗ ∼= (∗, ∗) → ∗ ∼= ({Bool} → ∗) → ∗

if only we had a kind{Bool} with two inhabitants{T} and{F}.
Let’s just pretend, for now, that{Bool} exists. To rebuild the
Bifunctor machinery, we shall need to pack up any pair of types
as a{Bool}-indexed type. We can do this with a GADT playing
the role ofif ... then ... else..., but with the condition coming last.

data (:??:) :: ∗ → ∗ → {Bool} → ∗where

InT :: t → (t :??: f) {T}
InF :: f → (t :??: f) {F}

Correspondingly, we can pack up a pair of functions as anindex-
preservingfunction between the correspondingTorFs.

(<??>) :: (α → α′) → (β → β′)
→ (α :??: β) b → (α′ :??: β′) b

(tr <??> fa) (InT t) = InT (tr t)
(tr <??> fa) (InF f) = InF (fa f)

These index-preserving functions provide us with an appropriate
notion of morphism between indexed types. Let us name them:

type σ ·→ τ = ∀ i . σ i → τ i

Conveniently, we have thatid :: σ ·→ σ, and that iff :: σ ·→ τ
and g :: ρ ·→ σ, then f . g :: ρ ·→ τ. This composition is, of
course, associative and absorbsid on either side. We may consider

2 TheP in PFix is silent.
3 This is the ‘categorical’ just, which acts like cyanide in lepidoptery.

{Bool} → ∗ with ·→ to be a category! Let us be tidy, and observe
that

(<??>) :: (α → α′) → (β → β′) → α :??: β ·→ α′ :??: β′

We are now in a position to seeBifunctors as functors between
{Bool} → ∗ and∗ – we must explain how to take·→ morphisms
and return ordinary functions.

class BooFunctor (φ :: ({Bool} → ∗) → ∗) where

boomap :: (σ ·→ τ) → (φ σ → φ τ)

This looks just like the declaration forFunctor, except that we
have different source and target categories, and we use the relevant
morphisms for each. When we buildBooFunctors, we use the
choice of index to select which sorts of substructure to put where.
Here,ListBoo does the same job asListB, with {T} indicating list
element positions and{F} indicating positions for sublists.

data ListBoo :: ({Bool} → ∗) → ∗where

NilBoo :: ListBoo τ

ConsBoo :: τ {T} → τ {F} → ListBoo τ

instance BooFunctor ListBoo where

boomap tf NilBoo = NilBoo

boomap tf (ConsBoo x xs) = ConsBoo (tf x) (tf xs)

Note thattf must be polynorphic enough to be used on substruc-
tures of either kind — that is, it must actually represent a pair of
functions, just as inbimap.

If you suspect thatBooFunctor looks too specific to be the ba-
sis of a good library, you would be right.BooFunctor is just a
refactoring ofBifunctor, using indexing to collect the two param-
eters. We could readily replace{Bool} with {Maybe Bool} if we
wanted a third parameter, but it might be preferable not to have a
furtherclass MayBooFunctor to capture the appropriate structure.
We shall clearly need to look for a suitable generalization.Before
we do so, however, let us look at another opportunity for indexing.

5. Mutual Datatypes as Indexed Structures
We have just seen how indexing the parameter to a functor models
multiple sorts of substructure. We may equally well index the
‘output’ of a functor to model multiple sorts of superstructure, in
a single definition. Mutually defined datatypes, and multi-sorted
syntaxes in particular, can be seen this way. My particular favourite
example is the definition of locally namelessλ-terms inβ-normal
form, with de Bruijn indices for bound variables (Var), but no
commitment to a particular representation of free variables (Par).

data Norm :: ∗ → ∗where

Lam :: Norm x → Norm x

Neu :: Neut x → Norm x

data Neut :: ∗ → ∗where

Par :: x → Neut x

Var :: Int → Neut x

App :: Neut x → Norm x → Neut x

We have two type constructors of kind∗ → ∗, but we can use a
little algebra to express the pair as a single exponential.

(∗ → ∗, ∗ → ∗) ∼= ∗ → (∗, ∗) ∼= ∗ → ({Bool} → ∗)

This suggests that we might combine the two branches of our
definition into one, sharing the ‘variables’ parameter and using a
{Bool} index to distinguishNorm ({T}, say) fromNeut.

data NorN :: ∗ → ({Bool} → ∗) where

Lam :: NorN x {T} → NorN x {T}
Neu :: NorN x {F} → NorN x {T}
Par :: x → NorN x {F}

short description of paper 3 2009/7/13

Var :: Int → NorN x {F}
App :: NorN x {F} → NorN x {T} → NorN x {F}

We can seeNorN as a functor from∗ to {Bool} → ∗ whose
action is simultaneousrenaming, lifting functions on free variables
to functions on terms which respect syntactic structure andpreserv-
ing their status as normal or neutral. Bound variables are, of course,
unaffected.

rename :: (α → β) → (NorN α ·→ NorN β)
rename r (Lam t) = Lam (rename r t)
rename r (Neu t) = Neu (rename r t)
rename r (Par x) = Par (r x)
rename r (Var i) = Var i

rename r (App f s) = App (rename r f) (rename r s)

Of course, the above representation fails to enforce the safe scoping
of bound variables. The traditional remedy is also an instance of
indexing. Given a typeNat of natural numbers with constructors
Z andS, we may imagine defining finite sets of bounded numbers
according to venerable tradition, in whichFin {Z} is empty and
Fin {S n } has one element more thanFin {n }.

data Fin :: {Nat} → ∗where

FZ :: Fin {S n }
FS :: Fin {n } → Fin {S n }

Now we can make our definition guarantee scope:

data NN :: ∗ → ({Nat, Bool} → ∗) where

Lam :: NN x {S n, T} → NN x {n, T}
Neu :: NN x {n, F} → NN x {n, T}
Par :: x → NN x {n, F}
Var :: Fin {n } → NN x {n, F}
App :: NN x {n, F} → NN x {n, T} → NN x {n, F}

We have stepped beyond the realm of mutually defined simple types
— NN cannot be ‘demutualized’ into finitely many unindexed
definitions. This should give us reason to hoipe that a principled
approach to indexed data structures might deliver more thanjust
a model of simple mutual definitions, as found in [?]. But so far,
I have been rather casual in adding type-like kinds to this paper-
local dialect of Haskell. It is high time I was at least precise in my
wishful thinking.

6. The Braces of Upward Mobility
The Glasgow Haskell Compiler currently extends the Haskell98
standard significantly, supporting in particular the declaration of
Generalized Algebraic DataTypes (GADTs), a form of what de-
pendent type theorists still call ‘inductive families’ when they are
talking amongst themselves. However, in order to maintain the sep-
aration of terms from types, GHC requires that GADTs are indexed
by type-level stuff and have kinds built from∗ and→.

Let me propose a little Strathclyde Haskell Enhancement. I
extend the syntax of kinds as follows

κ = ∗
| {τ}
| κ → κ

| ∀ α :: κ. κ

whereτ denotes the syntactic category of types. The{τ} construct
lifts a typeτ to the kind level, allowing it to be used as an index. The
kind {Nat, Bool} I wrote above is just a little sugar for the lifted
pair type{(Nat, Bool)}. However, with this increased diversity at
the kind level comes the need for polymorphism. Correspondingly,
let us permit quantification over inhabitants of kinds. Notethat
the latter falls far short ofkind polymorphism, abstracting kinds

themselves. The variablesα bound by the quantifier live at the type
level, and can thus only be used inside{...}.

Lifted types are inhabited by lifted expressions, but before any-
one starts panicking about dependent types in Haskell, or boasting
about not needing them, let me be quite clear that this is a much
more modest proposal. In order to retain essentially the same type
inference technology we use today, let us be sure that the expres-
sions we lift

1. are guaranteed to terminate;

2. admit first-order unification.

One fragment of the expressions which clearly satisfies these
criteria consists of just those which can be built from variables and
fully applied value constructors. Let us extend the type language

τ = ...
| {υ}

υ = x

| C υ∗

Theseυ-forms are the very stuff of first-order unification, and
they do not compute at all, let alone for ever. Greater ambition
is to be encouraged in the long term, but I shall choose to be
patient in this paper. Let me also assure you that the variables
permitted inυ-forms arenot the program variables in scope, but
rather the∀-bound type-level variables which happen to inhabit
{τ} kinds. Correspondingly, we retain the separation of run-time
and type-level values for the time being, even if the re-use of
notation suggests otherwise, and nods towards stronger possibilities
in future.

With this extension in place, it becomes harder to impress your
friends by faking type-level copies of value-level data. Wecan just
use plain old data and get along. So let us not be distracted by
coding tricks any longer, and get to work.

7. Slice Categories, Indexed Functors
I can only learn category theory by accident, discovering that some
abstruse phrase of the categorical taxonomy connects to some com-
putational intuition with which I am already at home: the dual of
the categorical just is the programmer’s ‘isthat what they’re on
about?’. In that spirit, let me try to equip the working Haskell pro-
grammer with some helpful categorical kit in tandem with itscom-
putational payoff.

For a given categoryC — think of ∗ in the first instance — let
us write

α :: C f :: σ → τ

to indicate thatα is anobjectof C and thatf is anarrow from object
σ to objectτ. For C to be a category, we require the existence of
identities and composites

α :: C

id :: α → α
f :: σ → τ g :: ρ → σ

f ◦ g :: ρ → τ

satisfying the usual trio of laws:

id ◦ g = g f ◦ id = f (f ◦ g) ◦ h = f ◦ (g ◦ h)

Now pick an ‘index’ objectι :: C. The slice categoryC / ι
has ‘objects with indexing’, and ‘index-preserving arrows’. That
is, each object ofC / ι is an object ofC equipped with aC-arrow
to ι, and the arrows between two such indexed objects are exactly
the arrows on the underlying objects which happen to preserve
indexing.

α :: C a :: α → ι
(α, a) :: C / ι

f :: σ → τ t ◦ f = s
f :: (σ, s) → (τ, t)

short description of paper 4 2009/7/13

It is not hard to check thatid :: (α, a) → (α, a), and thatf ◦ g
preserves indexing if bothf andg do.

In a language with dependent pairs and equality types, it is
straightforward to code up slices for the category of types and
functions: an object is the dependent pair of a typeα and an
indexing function fromα; an arrow is the dependent pair of a
functionf and the proof thatf preserves index.

Our category of indexed type constructorsσ, τ :: {ι} → ∗ and
index-preserving functionsf :: σ ·→ τ performs the role of∗/ι
without the need

A. Appendix Title
This is the text of the appendix, if you need one.

Acknowledgments
Acknowledgments, if needed.

References
[Abbott et al.(2005)Abbott, Altenkirch, and Ghani] Michael Abbott,

Thorsten Altenkirch, and Neil Ghani. Containers - constructing
strictly positive types. Theoretical Computer Science, 342:3–27,
September 2005. Applied Semantics: Selected Topics.

[Aitken and Reppy(1992)] William Aitken and John Reppy. Abstract value
constructors. Technical Report TR 92-1290, Cornell University, 1992.

short description of paper 5 2009/7/13

