
Preliminary Report. Final version to appear in:
ACT 2020

This work is dedicated to the public domain.

Compositional Game Theory, Compositionally

Robert Atkey Bruno Gavranović Neil Ghani
Clemens Kupke Jérémy Ledent Fredrik Nordvall Forsberg

The MSP Group, University of Strathclyde
Glasgow, Écosse Libre

We present a new compositional approach to compositional game theory (CGT) based upon Arrows, a
concept originally from functional programming, closely related to Tambara modules, and operators
to build new Arrows from old. We model equilibria as a module over an Arrow and define an operator
to build a new Arrow from such a module over an existing Arrow. We also model strategies as graded
Arrows and define an operator which builds a new Arrow by taking the colimit of a graded Arrow. A
final operator builds a graded Arrow from a graded bimodule. We use this compositional approach
to CGT to show how known and previously unknown variants of open games can be proven to form
symmetric monoidal categories.

1 Introduction

A new strain of game theory — Compositional Game Theory (CGT) — was introduced recently [9]. At
its core, CGT involves a completely new representation of games — open games — with operators for
constructing larger and more complex games from smaller, simpler (and hence easier to reason about)
ones. Despite recent substantial interest and further development [13, 10, 7, 6, 4, 11, 14], open games
remain complex structures, e.g. the simplest form of an open game is an 8-tuple consisting of 4 ports, a
set of strategies, play and coplay functions and an equilibrium predicate. More advanced versions [4]
require sophisticated structures such as coends. This causes problems: (i) complex definitions lead to
complex and even error prone proofs; (ii) proofs are programs and overly complex proofs turn into overly
complex programs; (iii) even worse, this complexity deters experimentation and innovation, for instance
the authors of [10] were deterred from trying alternative definitions as the work became prohibitive; and
(iv) worse still, this complexity suggests we do not fully understand the mathematical structure of open
games.

Category theorists have an answer to such complexity: trade complex definitions in a simple category
for simpler definitions in a more complex category. This simplified open games by factoring their definition
via the category of lenses, and this more abstract perspective led directly to the discovery of Bayesian
Open Games [4] where one naturally swaps out lenses in favour of optics when one starts with a monoidal
category. Swapping out a subcomponent for another is a hallmark of compositionality, but, because the
definition of open games is not compositional, one has to redevelop all the structure of open games built
over optics from scratch. The same thing happens with open games with mixed strategies [10] where a
small change — here to the type of the equilibrium predicate — leads to the need to redevelop the full
theory of these open games. The same story is true if we want to (i) replace equilibria with best-response;
or (ii) add type dependency; or (iii) allow the covariant play function and contravariant co-play function
to live in different categories; or (iv) build open games over monadic effects; or (v) consider a host of
other variations of open games. Every single time we must show from scratch that a given variant of open
game forms a monoidal category — a highly non-trivial task.

http://creativecommons.org/publicdomain/zero/1.0/

2 Compositional Game Theory, Compositionally

We present a compositional approach to CGT which allows us exactly to make small modifications to
the definition of an open game, check these modifications have suitable local properties, and conclude the
resulting open games do indeed form a monoidal category. As with compositionality in general, we start
with a semantic structure and define operators to build more complex examples from smaller ones. The
semantic structure we use is a presentation of monoidal categories using profunctors and Arrows [17].
This simplifies the treatment of the monoidal structure to that of a strength, and also allows us to work in
a purely functorial setting. We stress that arrows are just a convenient tool — it would also be possible to
work with monoidal categories directly. This paper develops a three phase compositional axiomatisation
of CGT: (i) the first phase consists of selecting an arrow to represent the play/coplay structure of open
games; (ii) the second phase abstracts the equilibrium predicate to a bimodule over an arrow, and defines
an operator for building new arrows from an old arrow and a bimodule over it; and (iii) the final phase
abstracts the indexing of open games by strategies by defining an operator which maps a graded arrow to
an arrow. This provides a simple, compositional axiomatisation of CGT in arrow theoretic terms. We
also show we can add the strategies first and then later add the equilibrium predicate. This later approach
also allows us to treat probabilistic games and open games based upon best response functions. The
closest approach in the literature is Hedges [14, §8], and while there are notable similarities there are also
significant differences, e.g. while Hedges [14] provides an axiomatisation of certain forms of open games,
it does not do so compositionally, and is not general enough to cover probabilistic or dependently typed
open games.

In summary, this more abstract picture clearly exposes the fundamental mathematical structure of
open games in a way which has not been done before. The originality of the paper lies in its conceptual
reimagining of open games as a compositional structure using canonical mathematical structures such
as arrows, modules and grading. Its utility is demonstrated by the variety of examples — some known
and others new to this paper — encompassed by our framework. As a result, we believe our presentation
will both (i) lead to further new variants of open games; and (ii) become the default presentation of open
games.

2 Profunctors and Arrows

Definition 1 (Profunctor). Given two categories C and D , a profunctor F from C to D , denoted by
F : C −7→D , is a functor F : C op×D → Set.

Example 2. Let C be a category. Then HomC : C op×C → Set is a profunctor.

Profunctors, strong profunctors and monoids therein form our bedrock and much of this paper is a
toolbox for building new examples of arrows from old. The bicategory Prof has categories as objects,
profunctors as morphisms, and natural transformations as 2-cells. Composition of profunctors is given by
the the following coend formula, for F : C −7→D and G : D −7→ E .

(G•F)(X ,Z) :=
∫ Y :D

F(X ,Y)×G(Y,Z)

The identity profunctor on C is HomC . We now fix a monoidal category C and focus on the cate-
gory Prof(C) of profunctors from C to C and natural transformations between them.

Definition 3 (Strength). A (right) strength for a profunctor F : Prof(C) is a family of morphisms
stX ,Y,Z : F(X ,Y)→ F(X ⊗ Z,Y ⊗ Z) (natural in X ,Y , and dinatural in Z) making the following two
diagrams commute. We often write stZ or just st when the subscripts can be inferred from context.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 3

F(X ,Y) F(X⊗ (Z⊗Z′),Y ⊗ (Z⊗Z′))

F(X⊗Z,Y ⊗Z) F((X⊗Z)⊗Z′,(Y ⊗Z)⊗Z′)

stZ

stZ⊗Z′

F(α−1,α)

stZ′

and

F(X ,Y)

F(X⊗ I,Y ⊗ I)

stIF(ρ,ρ−1)

Such a pair (F,st) is called a strong profunctor1. Note that several strengths may exist for the same
profunctor. When several strengths for different profunctors (say F and G) are involved, we distinguish
them using superscripts, stF and stG. A strong natural transformation from (F,stF) to (G,stG) is a natural
transformation τ : F → G that commutes with the strengths:

F(X ,Y) F(X⊗Z,Y ⊗Z)

G(X ,Y) G(X⊗Z,Y ⊗Z)

stF

τX ,Y τX⊗Z,Y⊗Z

stG

The category StrProf(C) of strong profunctors and strong natural transformations is monoidal, where
the tensor product is the composition operator •, and the unit is the functor HomC . This allows us to talk
about monoids inside StrProf(C).

Definition 4 (Arrow). An arrow is a monoid in (StrProf(C),•,HomC), i.e. a strong profunctor (A,st)
together with strong natural transformations pure : HomC → A and >>>: A•A→ A, satisfying the expected
monoid laws.

If we unpack Definition 4 (and use the universal property of coends), an arrow on C can be described
more concretely by the following data:

• A family of sets A : |C |× |C | → Set;

• A family of functions pureXY : HomC (X ,Y)→ A(X ,Y);

• A family of functions >>>XY Z: A(X ,Y)×A(Y,Z)→ A(X ,Z), called arrow composition;

• A family of functions stXY Z : A(X ,Y)→ A(X⊗Z,Y ⊗Z);

subject to a number of arrow equations expressing functoriality, naturality, and so on (see e.g. Atkey [2]).
We often use this presentation in the rest of the paper. We sometimes omit the subscripts to reduce notation
when they can be inferred; and sometimes add a superscript, e.g. >>>A, to specify which arrow they belong
to.

There is a notion of a left strength F(X ,Y)→ F(Z⊗X ,Z⊗Y), analogous to Definition 3, that satisfies
similar properties. When the category C is symmetric monoidal, left and right strengths are interdefinable:

Lemma 5. Let C be symmetric monoidal. A right strength st for a profunctor F : Prof(C), induces a
left strength st′ : F(X ,Y)→ F(Z⊗X ,Z⊗Y) as st′XY Z = F(σZX ,σY Z)◦ st. The left strength satisfies the
(di)-naturality conditions and analogues of the diagrams in Definition 3.

In general, arrows give rise to premonoidal categories [2]. The reason we do not get a monoidal
category is that there are two ways to define a map A(X ,Y)×A(X ′,Y ′)→ A(X ⊗X ′,Y ⊗Y ′), and they
need not coincide. Since we are interested in (symmetric) monoidal categories, we need to restrict to
commutative arrows2.

1See also Rivas and Jaskelioff [24] for a similar definition in the case when C is cartesian. This definition is also the same as
Pastro and Street’s definition of the additional structure required for a profunctor to be a Tambara module [22].

2There is a similar situation with strong monads, whose Kleisli category is in general only premonoidal. To get a monoidal
category, we need the stronger notion of commutative monad (a.k.a. monoidal monad). See Example 9.

4 Compositional Game Theory, Compositionally

Definition 6. Let C be symmetric monoidal. An arrow (A,pure,>>>,st) is commutative if the following
diagram mixing left strength, right strength, and composition commutes:

A(X ,Y)×A(X ′,Y ′) A(X⊗X ′,Y ⊗X ′)×A(Y ⊗X ′,Y ⊗Y ′)

A(X⊗X ′,Y ⊗Y ′)

A(X ′,Y ′)×A(X ,Y) A(X⊗X ′,X⊗Y ′)×A(X⊗Y ′,Y ⊗Y ′)

∼=

stX ′×st′Y

>>>

st′X×stY ′

>>>

The following is a mild extension of results in the literature [16, 24].

Proposition 7. Let C be symmetric monoidal. Every commutative arrow A : Prof(C) gives rise to a
symmetric monoidal category whose objects are the objects of C , and whose morphisms from X to Y are
the elements of A(X ,Y). Moreover, there is a strict monoidal functor J : C → A where we abuse notation
and write A for both the arrow and the monoidal category it induces.

Example 8. For any symmetric monoidal category C , the functor HomC : C op×C → Set is an arrow,
whose associated monoidal category is C itself.

Example 9. Let T : C → C be a strong monad on C . The Kleisli arrow of T is defined by AT (X ,Y) :=
HomC (X ,TY). If T is commutative, then the arrow AT is also commutative. Its associated monoidal
category is the Kleisli category CT . Dually, if T : C → C is a strong comonad on C , its co-Kleisli arrow
is defined by AT (X ,Y) := HomC (T X ,Y).

We use this last example to show lenses form an arrow in the next section. This example also
demonstrates the interest in arrows from the functional programming community, as arrows provide a
single framework within which computations with both effects and coeffects can live. To summarise:
arrows provide a presentation of monoidal categories where the monoidal structure is induced by strength,
and generalise both monadic and comonadic computation. We can use constructions on functors and
internal monoids to build new arrows from old; this flexibility underpins their use in this paper.

3 Open Games

Rather than hit the reader with the full profunctor framework we have developed, we show first how a
compositional treatment of open games is possible, which abstracts away from any specific notion of lens
as the primitive building block for open games. As this is expository material we only sketch proofs, and
work with Set-based open games.

3.1 Open games, concretely

Open games were originally presented as follows [12]:

Definition 10 (Open Game). Let X ,Y,R and S be sets. A pure open game G = (JG,PG,CG,EG) : (X ,S)→
(Y,R) consists of:

• A set JG, called the set of strategies of G,

• A function PG : JG×X → Y , called the play function of G,

• A function CG : JG×X×R→ S, called the coutility function of G, and

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 5

• A predicate EG : X × (Y → R)→P(JG), called the equilibrium function of G3 (where P is the
powerset functor).

An important conceptual step was the lens-ification of open games [9]. The functor W : Set×Setop→
Set× Setop defined by W (X ,S) = (X ,X → S) is a comonad. The category of lenses Lens is the co-
Kleisli category of W : concretely, its objects are pairs of sets, and the morphisms from (X ,S) to (Y,R)
are pairs of functions (f ,g) with f : X → Y and g : X ×R→ S. Noting that X ∼= Lens(1,1)(X ,S) and
(Y → R)∼= Lens(Y,R)(1,1), we have:

Theorem 11. Let I = (1,1) and A and B be objects of Set×Setop. An open game G : A→ B is given by:
(i) a set JG of strategies; (ii) a function pG : JG→ Lens(A,B); and (iii) a predicate EG : JG×Lens(I,A)×
Lens(B, I)→ Bool.

Apart from internalising the notion of open games into structure internal to the category of lenses, and
combining the treatment of play and coplay into a single morphism, this more abstract formulation gives
cleaner proofs of the following fundamental theorem:

Theorem 12. There is a symmetric monoidal category Op whose objects are pairs of sets, and whose
morphisms are open games, with games with isomorphic strategy sets identified4. This structure reflects
the sequential and parallel composition of open games.

3.2 A Compositional Treatment of Open Games

Rather than proving that open games and similar structures form a monoidal category in one fell swoop,
i.e. non-compositionally, we adopt a more compositional, step by step approach. As mentioned in the
introduction we do this by using profunctors and arrows. The first step is easy: by Example 9, the comonad
W (X ,S) = (X ,X → S) gives rise to an arrow on Set×Setop, that we also denote by Lens, like its induced
symmetric monoidal category. Note that the strength of W is defined with respect to the monoidal structure
of Set×Setop (not its cartesian structure), which sends (X ,Y) and (X ′,Y ′) to (X×X ′,Y ×Y ′). The unit
of this monoidal structure is I = (1,1).

Proposition 13. The profunctor Lens : Prof(Set×Setop) is a commutative arrow.

This establishes the well-known fact that the category of lenses is symmetric monoidal. Further,
the unit of this arrow is the core of the lifting of functions through open games. The next part of our
compositional construction requires that an arrow that satisfies a property called projection at points — a
property that the key case of Lens has. Condition (1) below essentially expresses that the projection map
p0 is an internal natural transformation. In particular, it implies naturality of p0 in both parameters.

Definition 14 (Projection at points). Let A : Prof(Set×Setop) be an arrow. Then A has projection at
points if there is a family of maps p0

X ,X ′ : A(I,X⊗X ′)→ A(I,X) such that

p0
Y,X ′(j >>> stX ′(a)) = p0

X ,X ′(j)>>> a and p0
X ,Y ′(j >>> st′X(a

′)) = p0
X ,X ′(j) (1)

for all j ∈ A(I,X ⊗X ′), a ∈ A(X ,Y) and a′ ∈ A(X ′,Y ′). Using symmetry, this means that there also
is a projection p1

X ,X ′ : A(I,X ⊗X ′)→ A(I,X ′) given by p1
X ,X ′ := p0

X ,X ′ ◦A(id,σ) that satisfies similar
conditions.

3Hedges [12] presents open games with best response functions rather than equilibrium functions, but we prefer the
presentation using equilibria for simplicity. We will show how to also define open games with best response functions
compositionally in Section 6.

4An alternative to this quotient would be to work with bicategories instead.

6 Compositional Game Theory, Compositionally

Given any arrow A (such as Lens) with projection at points, which we think of as representing some
primitive building block, we now want to attach to it an equilibrium predicate — the key feature of open
games. The type of this equilibrium predicate is Equib(A)(X ,Y) := A(I,X)×A(Y, I)→ Bool. Note that
Equib(A) itself is not an arrow: it has a structure that we call an A-bimodule in Section 4.1. However, by
bundling together A and Equib(A), we do get an arrow:

Proposition 15. Let A : Prof(Set×Setop) be a commutative arrow with projection at points. Then the
profunctor A×Equib(A) : Prof(Set×Setop) defined by

(A×Equib(A))(X ,Y) = A(X ,Y)× (A(I,X)×A(Y, I)→ Bool)

is a commutative arrow.

Proof. The unit of A×Equib(A) is built from the unit of A and an equilibrium predicate which always
returns true. The composition

>>>X ,Y,Z: (A×Equib(A))(X ,Y)× (A×Equib(A))(Y,Z)→ (A×Equib(A))(X ,Z)

is obtained as follows. We are given four arguments s : A(X ,Y), t : A(Y,Z), f : A(I,X)×A(Y, I)→ Bool,
and g : A(I,Y)×A(Z, I)→ Bool, and we define

(s, f)>>> (t,g) :=
(
s >>>A t,λxλ z. f (x, t >>>A z)∧g(x >>>A s,z)

)
where >>>A is the multiplication of A.

To define the strength stX ,Y,Z : (A×Equib(A))(X ,Y)→ (A×Equib(A))(X⊗Z,Y ⊗Z), we are given
an element s : A(X ,Y) and a predicate f : A(I,X)×A(Y, I)→ Bool. We put

stZ(s, f) :=
(

stAZ(s),λxλy. f
(

p0(x),st′AY (p1(x))>>>A y
))

where stA denotes the strength of A, st′A left strength and p0 and p1 are the projections at points. We omit
the proof of commutativity of the arrow.

Those familiar with the intricacies of the monoidal and sequential composition of open games will
notice their essence above. What is really surprising is that this can be carried out for any set-based arrow
satisfying projection at points and not just for lenses. This generality was not expected. Finally, we turn to
indexing by sets of strategies. Again, we work solely with arrows and introduce an arrow constructor to
deal with strategies. The simplest, used here, is a variant of the fundamental families construction from
categorical logic [19, Def. 1.2.1] where we refer to a function J→ X as a J-indexed collection of X’s.

Proposition 16. Let A : Prof(Set× Setop) be a commutative arrow. Then the profunctor Fam(A) :
Prof(Set×Setop) defined by

Fam(A)(X ,Y) = colimitJ:Setiso(J→ A(X ,Y))

is a commutative arrow.

Proof. The unit of Fam(A) is the singleton family built from the unit of A. The composition of Fam(A)
sends (J,F : J→ A(X ,Y)) and (K,G : K→ A(Y,Z)) to (J×K,(j,k) 7→ F(j)>>>A G(k)) (see also Han-
cock’s tensor on containers [18, Def. 2.3]). Finally, strength for Fam(A) takes a family and post-composes
it with the strength of A.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 7

Note that in the definition of Fam(A), taking the colimit over the category Setiso of sets and bijective
functions is crucial. Indeed, it ensures that families indexed by isomorphic strategy sets are identified. This
quotient is important to prove the associativity of arrow composition; the same issue comes up in the usual
treatment of open games [9]. Combining Propositions 13, 15, 16 and 7, we get a symmetric monoidal
category Op = Fam(Lens×Equib(Lens)) and an embedding Set× Setop → Op, in a compositional
manner.

4 Bimodules and Graded Arrows

We now upgrade the expository illustration of the previous section. The simplest observation is that there
is nothing special about the category Set — any monoidal category can be used. We then generalise
the (−×Equib(−)) construction using a general notion of bimodule for an arrow in Section 4.1. We
decompose Fam(A) using a notion of graded arrow in Section 4.2. In Sections 5 and 6 we will use the
work in this section to reconstruct open games on optics [4] and other known and new variations of open
games, respectively.

4.1 Bimodules

The cumbersome proof of Proposition 15 can be further decomposed. Notice that the arrow

(A×Equib(A))(X ,Y) = A(X ,Y)× (A(I,X)×A(Y, I)→ Bool)

is obtained by combining the arrow A with the predicate type Equib(A)(X ,Y) := A(I,X)×A(Y, I)→Bool.
As it turns out, Equib(A) has a nice structure that we call an A-bimodule5. We will use this technology to
prove Proposition 33, which generalizes Proposition 15.

We also take the opportunity to notice that there is nothing special about the Booleans in the definition
of concrete open games, and replace them with an arbitrary monoid with suggestively named operations
(M,∧, tt) — Hedges’ software implementation [15] uses this insight to collect more in-depth diagnostics
when checking equilibria.
Definition 17 (Bimodule). Let A : C −7→ C be an arrow. An A-bimodule is a profunctor B : C −7→ C
equipped with natural transformations ` : A•B→ B and r : B•A→ B, such that:

1. ` is a left-action, i.e., the two diagrams below commute;

A• (A•B) (A•A)•B

A•B B A•B

α

A•` >>>•B

` `

HomC •B B

A•B

λ

pure•B
`

2. r is a right-action (similar diagrams);

3. ` commutes with r, i.e.,

A• (B•A) (A•B)•A

A•B B B•A

α

A•r `•A

` r

5Note that our notion of an A-bimodule is equivalent to a profunctor for the (pre)monoidal category induced by A (Proposi-
tion 7), matching the alternative name “bimodule” for profunctors.

8 Compositional Game Theory, Compositionally

When B is a strong profunctor, ` and r are also required to be strong natural transformations.

Definition 18. Let A be an arrow and B : StrProf(C) an A-bimodule. We say that B is commutative when
the following diagram (akin to the one of Definition 6) commutes.

A(X ,Y)×B(X ′,Y ′) A(X⊗X ′,Y ⊗X ′)×B(Y ⊗X ′,Y ⊗Y ′)

B(X⊗X ′,Y ⊗Y ′)

B(X ′,Y ′)×A(X ,Y) B(X⊗X ′,X⊗Y ′)×A(X⊗Y ′,Y ⊗Y ′)

∼=

stX ′×st′Y

`

st′X×stY ′

r

Recall that profunctors inherit the cartesian structure of Set. Given F,G : C −7→D , their product is
defined by (F ×G)(c,d) := F(c,d)×G(c,d); and the terminal profunctor 1 : C −7→ D is the constant
functor that picks out a singleton set. It is easy to check that this is also a cartesian structure on StrProf(C).
Finally, note that • distributes over ×, in the sense that there is a strong natural transformation of type
F • (G×H)→ (F •G)× (F •H), and similarly with F on the right.

Definition 19 (Bimodule with monoid). When B additionally has a monoid structure (B,m,e) w.r.t. the
cartesian product (×,1) in StrProf(C), we also require that ` and r preserve the monoid structure of B:

A• (B×B) (A•B)× (A•B)

A•B B B×B

distributivity

A•m `•`

` m

A•1 A•B

1 B

id•e

! `

e

Theorem 20. Assume A : C −7→ C is an arrow, and B : StrProf(C) is a monoid w.r.t. cartesian product
(×,1) and an A-bimodule, then A×B is an arrow. Moreover, if both A and B are commutative (as an
arrow, as a monoid and as a bimodule), then so is A×B.

Proof. Since A and B are strong profunctors, then so is A×B. Moreover, our hypothesis gives us the
following strong natural transformations:

pureA : HomC → A ` : A•B→ B e : 1→ B

>>>A : A•A→ A r : B•A→ B m : B×B→ B

Then we define pureA×B := pureA× e, and >>>A×B is given by

(A×B)• (A×B)
(A•A)× (A•B)
×(B•A)× (B•B)

A×B×B A×B
distributivity >>>A×`×r× ! id×m

One can then check that the arrow laws are satisfied.

In virtue of Theorem 20, the proof of Proposition 15 now amounts to showing that Equib(A) is a
commutative A-bimodule with a (×,1)-monoid structure. In fact, we can further decompose this proof by
introducing the following notion of context. A similar notion of context appears in Hedges [14], where it
is axiomatized at the level of the monoidal category induced by the arrow A.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 9

Definition 21 (Context). Let A : C −7→ C be an arrow. A profunctor B : C −7→ C is called a context
when it is a commutative A-bimodule equipped with a costrength cstXY Z : B(X ⊗Z,Y ⊗Z)→ B(X ,Y),
satisfying some coherence diagrams similar to the ones for strength (full details in Appendix C.3).

The notion of costrength is a weakening of the notion of a trace for a symmetric monoidal category
to arbitrary profunctors — in particular if the profunctor B is the Hom-functor of a traced monoidal
category, then B has a canonical costrength. The meat of Proposition 15 lies in the next lemma. Notice
that the position of X and Y is reversed; hence the pre-composition with flip : C op×C → C ×C op in
Theorem 23. Another example of context, which does not require projection at points, will be given later
in Definition 31.

Lemma 22. If A has projection at points, then CtxtA(X ,Y) = A(I,Y)×A(X , I) is a context.

Proof. The left action is given by the family `XY Z : A(X ,Y)×CtxtA(Y,Z)→ CtxtA(X ,Z), defined by:

`XY Z := (s,z,y) 7→ (z,s >>>A y) : A(X ,Y)×A(I,Z)×A(Y, I)−→ A(I,Z)×A(X , I)

The right action is similar. To define the costrength, we use the strength of A and the projections p0, p1:

cstXY Z := (y,x) 7→ (p0(y),st′AX (p1(y))>>>A x) : A(I,Y ⊗Z)×A(X⊗Z, I)−→ A(I,Y)×A(X , I)

Theorem 23. Let A be a commutative arrow, B : C −7→ C be a context for A, and (M,∧, tt) be a
commutative monoid (in Set). Then MB◦flip is a commutative A-bimodule and (×,1)-monoid.

Proof. The left and right actions are given by the families of functions

`XY Z : A(X ,Y)×MB(Z,Y) −→MB(Z,X) rXY Z : MB(Y,X)×A(Y,Z)−→MB(Z,X)

(a,h) 7−→ λb. h(rB ba) (h,a) 7−→ λb. h(`B ab)

The (×,1)-monoid structure is inherited from the one of M:

eXY : 1−→MB(Y,X) mXY : MB(Y,X)×MB(Y,X) −→MB(Y,X)

∗ 7−→ λb. tt (h,h′) 7−→ λb. hb∧h′ b

Finally, the strength st : MB(Y,X) −→ MB(Y⊗Z,X⊗Z) is obtained by pre-composing with cstB. All the
bimodule axioms of MB◦flip can then be easily derived from those of B.

4.2 Graded Arrows and graded bimodules

The Fam(A) construction is really a two step construction: it takes an arrow A and parameterises by
elements of sets J, then the parameter sets are hidden using a colimit. The intermediate step in this process
is not an arrow because its composition composes morphisms with different parameter sets. However, it is
a graded arrow, which we define by adapting the definition of graded monads [20]. Graded monads have
been used to model programming languages with variable sets of possible side effects. The multiplication
of a graded monad is a natural transformation TpTq⇒ Tpq, where the p,q are from a symmetric monoidal
category (P, i, ·) of grades. Graded monads are lax monoidal functors P → Endo(C). Swapping
endofunctors for strong profunctors yields:

Definition 24. A P-graded arrow is a lax monoidal functor A : P → StrProf(C).

10 Compositional Game Theory, Compositionally

Unfolding this definition shows that a graded arrow comes equipped with graded composition
Ap(X ,Y)×Aq(Y,Z)→ Apq(X ,Z) and unit HomC (X ,Y)→ Ai(X ,Y) that use the monoidal structure of P .
Strength Ap(X ,Y)→ Ap(X⊗Z,Y ⊗Z) is provided for every grade p, but when we use strength to define
parallel composition we will use the monoidal structure of grades. To make sure that parallel composition
makes sense, graded arrows must be commutative. Note that the symmetry of P’s monoidal structure is
required for this definition to make sense.

Definition 25 (Commutative Graded Arrow). A P-graded arrow A is commutative if the two functions
Ap(X ,Y)×Aq(X ′,Y ′)→ Apq(X⊗X ′,Y ⊗Y ′) defined using left and right strength are equal.

When a graded arrow is commutative we obtain a canonical parallel composition of morphisms that
commutes with sequential composition. Note that the composition of parameters is the same as in the
sequential case, forced by an Eckmann-Hilton style argument.

We now use graded arrows to reconstuct Fam(A). The first step is this proposition, which follows
because the graded arrow is constructed pointwise.

Proposition 26. Let (P, i, ·) be a symmetric monoidal subcategory of (Set,1,×), and let A : StrProf(C)
be an arrow. Then (−→ A)p(X ,Y) = p→ A(X ,Y) is a Pop-graded arrow. If A is commutative, then so
is −→ A.

The second step in the Fam(A) construction is the following result, which shows that there is a general
way of “summing out” the grading of a graded arrow to recover an (ungraded) arrow.

Proposition 27. For every graded arrow A : P → StrProf(C), (colim A)(X ,Y) = colimp Ap(X ,Y) is
an arrow. If A is commutative, then so is colim A.

Proof. colim A is certainly a profunctor, so it remains to construct the monoid operations. The unit is
defined by the composite HomC (X ,Y)

purei→ Ai(X ,Y) ι→ colimp Ap(X ,Y) , where ι is the injection into the
colimit. Composition is defined using colimits commuting with products in Set: (colimp Fp(X ,Y))×
(colimq Fq(Y,Z))∼= colimp,q (Fp(X ,Y)×Fq(Y,Z))

colim>>>p,q−→ colimp,q Fpq(X ,Z)→ colimr Fr(X ,Z). Strength

is defined as colimp Fp(X ,Y) colimst−→ colimp Fp(X⊗Z,Y ⊗Z). Each of the axioms follows from the corre-
sponding axiom for the graded arrow A.

Thus we have decomposed the Fam(A) construction into colim (−→ A), using the intermediate
concept of graded arrow. We will also use this technology in Proposition 30 to prove that optics form an
arrow, as well as in Section 6 to introduce other indexing operators besides Fam. For variations such as
best-response games and probabilistic games, we need to introduce a graded version of bimodules:

Definition 28 (Graded bimodule). Let A : P→ StrProf(C) be a graded arrow. A graded A-bimodule is a
functor B : P → Prof(C) equipped with natural transformations `pq : Ap •Bq→ Bpq and rpq : Bp •Aq→
Bpq natural in p and q, satisfying the bimodule axioms:

1. ` is a left action,

2. r is a right action,

3. ` commutes with r.

When B : P → StrProf(C), we moreover require `pq and rpq to be strong natural transformations. As
in Section 4.1, we can define the notion of a commutative graded bimodule; and when each Bp has a
(×,1)-monoid structure, we require that ` and r should preserve it.

The following theorem is the graded generalisation of Theorem 20.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 11

Theorem 29. Assume A : P → StrProf(C) is a commutative graded arrow, and B : P → StrProf(C)
is a commutative graded A-bimodule, such that Bp is a commutative (×,1)-monoid for every p. Then
A×B : P → StrProf(C) is a commutative graded arrow.

Proof. The proof is very similar to the proof of Theorem 20.

5 Open games based on optics

In this section, we use graded arrows and bimodules compositionally define open games starting from a
monoidal category, so as to treat open games containing computational effects via the Kleisli category.
We fundamentally achieve the same result as [4], but we do so in a compositonal manner. Lenses only
define a monoidal category when the underlying category is cartesian. In a monoidal category we work
with optics [22, 5, 23, 3] instead:

Proposition 30. Let C be symmetric monoidal, and A : Prof(C) a commutative arrow. Then the profunc-
tor OpticA : Prof(C ×C op) defined by

OpticA((X ,S),(Y,R)) =
∫ P∈C

A(X ,P⊗Y)×A(P⊗R,S)

is also a commutative arrow.

Proof. By Proposition 27, and using that coends can be reduced to colimits using the twisted arrow
category Tw(C op)op (with objects arrows f : P′→ P in C) [21, Remark 1.2.3], it is enough to show that
the assignment OpticTw

A : Tw(C op)op→ StrProf(C ×C op) given by

OpticTw
A (P

f←− P′,(X ,S),(Y,R)) = A(X ,P′⊗Y)×A(P⊗R,S)

is a commutative graded arrow, which follows from A being a commutative arrow and C being symmetric
monoidal.

This compositional proof has factored out the coend calculations involved into a separate statement
about graded arrows. We expect many other monoidal categories defined in similar ways, e.g. combs [25],
can be proved monoidal using graded arrows to similarly avoid coend manipulation. Next, we follow Bolt,
Hedges and Zahn [4, §3.4] in generalising the type of the equilibrium function as needed when working
in a monoidal setting.

Definition 31. Let A : Prof(C) be an arrow, and M a monoid. We define the context and equilibrium type
profunctors CtxtCA ,EquibC

M(A) : Prof(C) by

CtxtCA (X ,Y) = OpticA((I, I),(Y,X))

EquibC
M(A)(X ,Y) = CtxtCA (Y,X)→M

We now prove the optics analogue of Lemma 22:

Lemma 32. Let A : Prof(C) be a commutative arrow. Then CtxtCA is a context, i.e. a commutative
A-bimodule coherently equipped with a costrength.

Proof. The left costrength is given by the Θ-indexed family of maps (cst′Z)Θ = ιΘ⊗Z . The actions
are defined using composition and the strength of A, e.g. for the left action A(X ,Y)×CtxtCA (Y,Z)→
CtxtCA (X ,Z):

12 Compositional Game Theory, Compositionally

A(X ,Y)×CtxtCA (Y,Z)
∼=
∫ P A(I,P⊗Z)×A(X ,Y)×A(P⊗Y, I)

∫ P A(I,P⊗Z)×A(P⊗X ,P⊗Y)×A(P⊗Y, I) CtxtCA (X ,Z)

∫ P(id×st′P×id) ∫ P(id×>>>)

One can then check that all the required laws of a bimodule with costrength are satisfied.

Applying Theorem 20 together with Theorem 23, we thus immediately get the optics analogue of
Proposition 15, but this time we do not need the assumption of projection at points:

Proposition 33. Let A : Prof(C) be a commutative arrow and M a monoid. The profunctor A×
EquibC

M(A) : Prof(C) defined by

(A×EquibC
M(A))(X ,Y) := A(X ,Y)×EquibC

M(A)(X ,Y)

is a commutative arrow.

To parameterise by strategies, we use graded arrows from Section 4.2. By Proposition 26 and
Proposition 27, when A is an arrow, Fam(A) = colim (−→ A) is an arrow. Composing the steps, we get
the following theorem. By using the abstract framework in the previous section, the proofs are much
shorter.

Theorem 34. Let C be a symmetric monoidal category and M a monoid. There is a symmetric monoidal
category OpC = Fam(OpticHomC

×EquibC
M(OpticHomC

)) of open games in C , and an embedding C ×
C op→ OpC .

6 Other variants of open games

We demonstrate the power of our framework by showing how a host of variations of open games can be
easily proven to form monoidal categories.

Example 35 (Fibred Open games). Lets say we want to add a little bit of type dependency so coutility
can depend on state and utility on the moved played. Type dependency is modelled fibrationally [19], e.g.
via the families fibration, which is split. Given a (split) fibration p : E →B, define the monoidal category
of fibrational lenses Lensp to have the same objects as E , and with morphisms from E to E ′ given by pairs
(f ,g), where f : pE→ pE ′ is a morphism in B and g : f ∗E ′→ E is a morphism in E . If p is a symmetric
monoidal fibration [26] then Lensp is a commutative arrow. Defining Fam and (−×EquibC

M(−)) as
in Section 5, we hence get an arrow Fam(Lensp×EquibC

M(Lensp)) of fibrational open games. This
subsumes the use of container morphisms [1] as dependently typed open games. The point of this example
is not that this is necessarily the right way to do dependent games — clearly a lot more dependency is
possible — but rather to show how new variants of open games can easily be shown monoidal in our
compositional framework.

Example 36 (Best Response). Using graded bimodules (Definition 28) and Theorem 29, we can recover
best response games [12, §2.1.5]. In these games, the equilibrium predicate is a relation on strategies in
context, expressed as a graded bimodule w.r.t. the graded arrow AJ := J→ A, for a given arrow A.

BestRespJ(X ,Y) = CtxtCA (Y,X)→ J× J→ Bool

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 13

The left action, of type AJ(X ,Y)×BestRespJ′(Y,Z)→ BestRespJ×J′(X ,Z), can be defined as follows.
Given a context c ∈ CtxtCA (Z,X) and a strategy j ∈ J, we can use the right action of the context (which is
an A-bimodule) to get a context c′ ∈ CtxtCA (Z,Y). Thus, given four parameters (j1, j′1, j2, j′2), we use j1 to
create a new context and feed it to BestRespJ′(Y,Z) together with (j′1, j′2) to obtain a boolean. Note that j2
is discarded, which is also what happens when we define the sequential composition of best response
games. Best response games are then defined as colimJ

(
(J→ Lens(X ,Y))×BestRespJ(X ,Y)

)
, which

automatically gives a symmetric monoidal category by Theorem 29 and Proposition 7.

Example 37 (Probabilistic games). Surprisingly, Probabilistic Open Games [11] can be recovered using
a construction similar to the one of Example 36. The main difference is that the graded bimodule is now
indexed by D(J), where D is the finite distribution monad. However, for it to work properly, we need to
make some assumptions on C and A.

For base category, we take C = Set× (D-Alg)op, where D-Alg is the category of algebras for
the monad D . There is a forgetful functor U : Set× (D-Alg)op → Set× Setop to the “usual” base
category Set×Setop, obtained by sending an algebra to its carrier set. Over this category, the profunctor
Lens(U−,U−) = Lens◦ (Uop×U) can easily be seen to be a commutative arrow (because Lens is), and
thus by Proposition 26, AJ(X ,Y) = J→ Lens(U(X),U(Y) is a Setiso-graded arrow. With these choices
of C and A, the graded A-bimodule for probabilistic equilibria selection is:

ProbEquibJ(X ,Y) = CtxtCLens(U(Y),U(X))→D(J)→ Bool

To match Definition 12 in [11], the left and right actions are defined quite differently: while the left
action relies on the so-called Kleisli predicate lifting D#[11, Def. 11], the right action uses the D-algebra
structure to compute the expectation of the payoff.

Finally, we define OpProb = colimJ
(
AJ(X ,Y)×ProbEquibJ(X ,Y)

)
, which again automatically yields

a symmetric monoidal category by our results. This links nicely to the definition of the equilibrium
for sequential composition of probabilistic open games [11, Def. 12]: the definition in loc.cit. uses a
conjunction whose conjuncts correspond to the left and right bimodule actions, respectively. This matches
the arrow composition of OpProb given by Theorem 29 (cf. proof of Theorem 20).

So far all examples have had sets of strategies. Its not surprising this does not have to be the case and
there are other options. Our framework means this can be handled compositionally.

Example 38 (Strategies need not be Sets). Consider the parametrisation functor Para : Prof(C)→
Prof(C) defined by (Para A)(X ,Y) = colimJ:Ciso A(J⊗X ,Y) [7, 8]. By our theorem on colimits of graded
arrows, Para maps commutative arrows to commutative arrows and hence could replace Fam. More
generally, given F : B×C → C , we define (ParaF A)(X ,Y) = colimJ:Biso A(F(J,X),Y). Again ParaF

maps commutative arrows to commutative arrows, and can hence be used to construct open games
ParaF(Lens×EquibC

M(Lens)) with strategies living in a different category than the play/coplay function.

Example 39 (Learners). If we take the category of lenses, omit the equilibria (or, equivalently, take
equilibria valued in the trivial monoid), and use the Para construction above, we get Fong, Spivak and
Tuyéras’ monoidal category of learners [7]. That is, defining Learn = Para(Lens) makes learners an
instance of our framework.

Example 40 (Effectful coplay and utility functions). Let C be a symmetric monoidal category. In
Section 5, we used optics to define an arrow on C ×C op, but the coend machinery used in its def-
inition is quite heavy, e.g. one might worry about the existence of the coends. An alternative con-
struction (folklore according to [27, §2.2]), instead defines an arrow on Comon(C)×C op, where
Comon(C) is the category of commutative comonoids in C . The underlying profunctor is defined

14 Compositional Game Theory, Compositionally

by LensC ((X ,S),(Y,R)) = HomComon(C)(X ,Y)×HomC (X⊗R,S), i.e. the same as for ordinary lenses,
except that the play functions must respect the comonoid structure. In particular, If C is a Kleisli category
for a commutative monad on a cartesian category, then every object has a natural comonoid structure.
Further, in this case LensC has projections at points, and so we can use Lemma 22 and Theorems 20
and 23 to equip it with a notion of equilibrium function LensC ×E(LensC). In the resulting notion of
games Fam(LensC ×E(LensC)), comonoid homomorphisms are intuitively ‘pure’ maps, so this notion of
game allows ‘effectful‘ coplay and utility functions, while the play function and the state in the equlibrium
predicate remain pure.

7 Conclusions and future work

We have developed a new framework for open games. Conceptually, our framework is not just an
axiomatisation of open games, but a compositional framework allowing us to vary and reorder components
without having to redevelop the whole theory of the resulting open games. This is achieved using standard
mathematical structures: arrows, bimodules and gradings. These structures allow us to define new arrows
from old which is the hallmark of compositionality. Collectively, we demonstrate the utility of this
framework by showing how a number of existing and new variants of open games can be shown to form
monoidal categories with relative ease. This is important as the monoidal structure reflects the parallel
and sequential composition of open games.

As is becoming clear, there is a huge variety of open games each with their pros and cons and each of
which makes sense to use in some circumstances. We must now work to determine which of the categories
of Open Games we have constructed are useful for Compositional Game Theory. To do this, we will need
to gain experience in modelling game theoretic concepts in our categories, and to observe how modifying
the constructions using the building blocks we have developed here affects the game theoretic models. We
will be aided in this investigation by studying embeddings between the various categories of Open Games.

We have built tools to prove that categories are symmetric monoidal. However, there are other
operators on games beyond parallel and sequential composition, e.g. an operator for repeated games is
needed. A start is given by [10], but we want to integrate such operators into our general compositional
framework.

All our profunctors have been of the form C op×C → Set but we could replace Set by some other
cocomplete monoidal category with (we conjecture) minimal disruption. This would give us an enriched
theory of open games which will be important for the investigation of topological games, with notions of
limit games.

Finally, it will be interesting to see if this framework has ramifications for software for open games by
providing all the benefits compositionality does. That is, rather than implementing a specific notion of
open games and expecting users to use that notion, our compositional framework would allow users to
build their own notion of open games suitable for their own needs (mixing both predefined components
such as for example Fam or Para with their own specific definitions). The fact that we have used
canonical categorical structures such as profunctors, modules and gradings means the road to a Haskell
implementation should be a pleasant road to engage with. We hope to make it so as a matter of priority.

Acknowledgements. The authors would like to thank Exequiel Rivas and Jules Hedges for helpful
discussions and comments.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 15

References

[1] Michael Gordon Abbott, Thorsten Altenkirch & Neil Ghani (2003): Categories of Containers. In Andrew D.
Gordon, editor: Foundations of Software Science and Computational Structures (FOSSACS 2003), Lecture
Notes in Computer Science 2620, Springer, pp. 23–38, doi:10.1007/3-540-36576-1_2.

[2] Robert Atkey (2011): What is a Categorical Model of Arrows? Electron. Notes Theor. Comput. Sci. 229(5),
pp. 19–37, doi:10.1016/j.entcs.2011.02.014.

[3] Guillaume Boisseau & Jeremy Gibbons (2018): What You Needa Know about Yoneda: Profunctor Optics and
the Yoneda Lemma (Functional Pearl). Proc. ACM Program. Lang. 2(ICFP), doi:10.1145/3236779.

[4] Joe Bolt, Jules Hedges & Philipp Zahn (2019): Bayesian open games. arXiv:1910.03656.

[5] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz Milewski, Emily Pillmore & Mario
Román (2020): Profunctor optics, a categorical update. arXiv:2001.07488.

[6] David Dalrymple (2019): Dioptics: a Common Generalization of Open Games and Gradient-Based Learners.
In: Fifth Symposium on Compositional Structures (SYCO 5).

[7] Brendan Fong, David I. Spivak & Rémy Tuyéras (2019): Backprop as Functor: A compositional perspective on
supervised learning. In: Logic in Computer Science (LICS 2019), pp. 1–13, doi:10.1109/LICS.2019.8785665.

[8] Bruno Gavranović (2019): Compositional Deep Learning. Master’s thesis, University of Zagreb. Available at
arXiv:1907.08292.

[9] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory.
In Anuj Dawar & Erich Grädel, editors: Logic in Computer Science (LICS 2018), pp. 472–481,
doi:10.1145/3209108.3209165.

[10] Neil Ghani, Clemens Kupke, Alasdair Lambert & Fredrik Nordvall Forsberg (2018): A compositional treatment
of iterated open games. Theor. Comput. Sci. 741, pp. 48–57, doi:10.1016/j.tcs.2018.05.026.

[11] Neil Ghani, Clemens Kupke, Alasdair Lambert & Fredrik Nordvall Forsberg (2019): Compositional Game
Theory with Mixed Strategies: Probabilistic Open Games Using a Distributive Law. In: Applied Category
Theory (ACT 2019).

[12] Jules Hedges (2016): Towards compositional game theory. Ph.D. thesis, Queen Mary University of London.

[13] Jules Hedges (2018): Morphisms of Open Games. In Sam Staton, editor: Mathematical Foundations of
Programming Semantics (MFPS 2018), Electronic Notes in Theoretical Computer Science 341, pp. 151–177,
doi:10.1016/j.entcs.2018.11.008.

[14] Jules Hedges (2019): The game semantics of game theory. arXiv:1904.11287.

[15] Jules Hedges (2020): Open games in Haskell. Repository at https://github.com/jules-hedges/
open-games-hs.

[16] Chris Heunen & Bart Jacobs (2006): Arrows, like Monads, are Monoids. In: Mathematical Foundations of
Programming Semantics (MFPS 2006), Electronic Notes in Theoretical Computer Science 158, Elsevier, pp.
219–236, doi:10.1016/j.entcs.2006.04.012.

[17] John Hughes (2000): Generalising monads to arrows. Science of Computer Programming 37(1–3), pp.
67–111, doi:10.1016/s0167-6423(99)00023-4.

[18] Pierre Hyvernat (2014): A linear category of polynomial diagrams. Mathematical Structures in Computer
Science 24(1), doi:10.1017/S0960129512001016.

[19] Bart Jacobs (1998): Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics
141, Elsevier, doi:10.1016/S0049-237X(98)80028-1.

[20] Shin-ya Katsumata (2014): Parametric effect monads and semantics of effect systems. In: Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 633–645,
doi:10.1145/2578855.2535846.

[21] Fosco Loregian (2019): Coend calculus. arXiv:1501.02503.

http://dx.doi.org/10.1007/3-540-36576-1_2
http://dx.doi.org/10.1016/j.entcs.2011.02.014
http://dx.doi.org/10.1145/3236779
https://arxiv.org/abs/1910.03656
https://arxiv.org/abs/2001.07488
http://dx.doi.org/10.1109/LICS.2019.8785665
https://arxiv.org/abs/1907.08292
http://dx.doi.org/10.1145/3209108.3209165
http://dx.doi.org/10.1016/j.tcs.2018.05.026
http://dx.doi.org/10.1016/j.entcs.2018.11.008
https://arxiv.org/abs/1904.11287
https://github.com/jules-hedges/open-games-hs
https://github.com/jules-hedges/open-games-hs
http://dx.doi.org/10.1016/j.entcs.2006.04.012
http://dx.doi.org/10.1016/s0167-6423(99)00023-4
http://dx.doi.org/10.1017/S0960129512001016
http://dx.doi.org/10.1016/S0049-237X(98)80028-1
http://dx.doi.org/10.1145/2578855.2535846
https://arxiv.org/abs/1501.02503

16 Compositional Game Theory, Compositionally

[22] Craig Pastro & Ross Street (2008): Doubles for monoidal categories. Theory and Applications of Categories
21(4), pp. 61–75.

[23] Mitchell Riley (2018): Categories of Optics. arXiv:1809.00738.
[24] Exequiel Rivas & Mauro Jaskelioff (2017): Notions of computation as monoids. J. Funct. Program. 27, p. e21,

doi:10.1017/S0956796817000132.
[25] Mario Román (2020): Comb Diagrams for Discrete-Time Feedback. arXiv:2003.06214.
[26] Michael Shulman (2008): Framed bicategories and monoidal fibrations. Theory and applications of categories

20(18), pp. 650–738.
[27] David I. Spivak (2019): Generalized Lens Categories via functors Cop→ Cat. arXiv:1908.02202.

https://arxiv.org/abs/1809.00738
http://dx.doi.org/10.1017/S0956796817000132
https://arxiv.org/abs/2003.06214
https://arxiv.org/abs/1908.02202

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 17

A Definition of a bimodule with costrength

For the sake of completeness, we spell in full details the definition of a costrength, and of a bimodule
equipped with a costrength (used to define the notion of context, Definition 21).
Definition 41 (Costrength). A (right) costrength for a profunctor F : C −7→ C is a family of morphisms
cstX ,Y,Z : F(X⊗Z,Y ⊗Z)→ F(X ,Y) (natural in X ,Y and dinatural in Z) making two diagrams commute:

F((X⊗Z)⊗Z′,(Y ⊗Z)⊗Z′) F(X⊗Z,Y ⊗Z)

F(X⊗ (Z⊗Z′),Y ⊗ (Z⊗Z′)) F(X ,Y)

cstZ′

F(α−1,α) cstZ

cstZ⊗Z′

and

F(X⊗ I,Y ⊗ I)

F(X ,Y)

cstIF(ρ−1,ρ)

Given a profunctor F : C −7→ C with a right costrength, assuming C is symmetric, we can define the left
costrength cst′X ,Y,Z : F(Z⊗X ,Z⊗Y)→ F(X ,Y) by cst′ := cst◦F(σ ,σ).

When an A-bimodule has a strength, the two actions ` and r are required to be strong natural
transformations. When it has a costrength, we require similar conditions:
Definition 42 (Bimodule with costrength). Let A : C −7→C be an arrow. When an A-bimodule B : C −7→C
is equipped with a costrength, we also require the two commutative diagrams below, relating the strength
of A, costrength of B and the left and right actions ` and r:

A(X⊗W,Y ⊗W)×B(Y ⊗W,Z⊗W) B(X⊗W,Z⊗W)

A(X ,Y)×B(Y ⊗W,Z⊗W)

A(X ,Y)×B(Y,Z) B(X ,Z)

`

cstW

stW×id

id×cstW

`

and
B(X⊗W,Y ⊗W)×A(Y ⊗W,Z⊗W) B(X⊗W,Z⊗W)

B(X⊗W,Y ⊗W)×A(Y,Z)

B(X ,Y)×A(Y,Z) B(X ,Z)

r

cstW

id×stW

cstW×id

r

Finally, we also have a counterpart of the commutativity condition, mixing strength and costrength.
Definition 43 (Commutative bimodule with costrength). An A-bimodule B with a costrength is commuta-
tive when the following diagram commutes:

A(X ,Y)×B(Y ⊗X ′,X⊗Y ′) B(Y ⊗X ′,X⊗Y ′)×A(X ,Y)

A(X⊗X ′,Y ⊗X ′)×B(Y ⊗X ′,X⊗Y ′) B(Y ⊗X ′,X⊗Y ′)×A(X⊗Y ′,Y ⊗Y ′)

B(X⊗X ′,X⊗Y ′) B(Y ⊗X ′,Y ⊗Y ′)

B(X ′,Y ′)

∼=

stX ′×id id×stY ′

` r

cst′X cst′Y

18 Compositional Game Theory, Compositionally

B Arrows à la Haskell, and the arrow laws

An arrow on C is given by the following data,

• A family of sets A : |C |× |C | → Set;

• A family of functions pureXY : HomC (X ,Y)→ A(X ,Y);

• A family of functions >>>XY Z: A(X ,Y)×A(Y,Z)→ A(X ,Z);

• A family of functions stXY Z : A(X ,Y)→ A(X⊗Z,Y ⊗Z);

satisfying the following equations

pure(id)>>> a = a (2)

a >>> pure(id) = a (3)

(a >>> b)>>> c = a >>> (b >>> c) (4)

pure(f ;g) = pure(f)>>> pure(g) (5)

st(a)>>> pure(id⊗ f) = pure(id⊗ f)>>> st(a) (6)

stI(a)>>> pure(ρ) = pure(ρ)>>> a (7)

st(a)>>> pure(α) = pure(α)>>> st(st(a)) (8)

st(pure(f)) = pure(f ⊗ id) (9)

st(a >>> b) = st(a)>>> st(b) (10)

Proposition 44. This defines an arrow in the sense of Definition 4, i.e., a monoid in (StrProf(C),•,HomC).

C Additional details for Section 4

C.1 Cartesian structure on StrProf(C)

The fact that (×,1) is a cartesian structure on Prof(C) follows from general facts about categories of
functors. To check that × is still a cartesian product in StrProf(C), we have to show that the following
diagram lives in StrProf(C):

H

F F×G G

〈p1,p2〉

p1 p2

π1 π2

Proposition 45. If F,G : C −7→ C are strong profunctors, then F×G is also strong, and the two pro-
jections maps are strong natural transformations. Moreover, given a strong profunctor H and strong
natural transformations p1 : H→ F and p2 : H→G, the pairing 〈p1, p2〉 : H→ F×G is a strong natural
transformation.

Proof. If we write stF and stG for the strengths of F and G, respectively, then the strength of F×G is
simply stF×G := stF × stG. The diagrams of Definition 3 commute since everything is defined component-
wise. The natural transformation π1 is strong because the diagram below trivially commutes, and similarly
for π2.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 19

F(X ,Y)×G(X ,Y) F(X⊗Z,Y ⊗Z)×G(X⊗Z,Y ⊗Z)

F(X ,Y) F(X⊗Z,Y ⊗Z)

stF×stG

π1 π1

stF

Finally, the pairing 〈p1, p2〉(X ,Y) : H(X ,Y)→ F(X ,Y)×G(X ,Y) is derived from the pairing in Set, so
we can easily check that the following diagram commutes, using the fact that both p1 and p2 are strong
natural transformations.

H(X ,Y) H(X⊗Z,Y ⊗Z)

F(X ,Y)×G(X ,Y) F(X⊗Z,Y ⊗Z)×G(X⊗Z,Y ⊗Z)

stH

〈p1,p2〉 〈p1,p2〉

stF×stG

We also need to define the distributivity natural transformation dist-left : F • (G×H)→ (F •G)×
(F •H) and dist-right : (G×H)•F → (G•F)× (H •F). We only treat the left distributivity in details,
the right one is similar.

Definition 46 (dist-left). First, we define dist-left1 : F • (G×H)→ F •G by:∫
Θ F(X ,Θ)×G(Θ,Y)×H(Θ,Y)

∫
Ψ F(X ,Ψ)×G(Ψ,Y)

∫
id×id×!

and similarly for dist-left2 : F • (G×H)→ F •H. Then, we can take dist-left := 〈dist-left1,dist-left2〉.

When the profunctors F,G,H are strong, we can show that the natural transformations dist-left1 and
dist-left2 preserve the strength, using the functoriality of the coends. For instance, for dist-left1,∫

Θ F(X ,Θ)×G(Θ,Y)×H(Θ,Y)
∫

Θ F(X ,Θ)×G(Θ,Y)

∫
Θ F(X⊗Z,Θ)×G(Θ,Y ⊗Z)×H(Θ,Y ⊗Z)

∫
Θ F(X⊗Z,Θ)×G(Θ,Y ⊗Z)

∫
stF×stG×stH

∫
id×id×!

∫
stF×stG

∫
id×id×!

Thus, by Proposition 45, dist-left is a strong natural transformation.

C.2 Proof of Theorem 20

Theorem 20. Assume A : C op×C → Set is a commutative arrow, and B : StrProf(C) is a commutative
A-bimodule and a commutative monoid w.r.t. the cartesian structure (×,1) on StrProf(C). Then A×B is
a commutative arrow.

Proof. The hypothesis correspond to the following families of maps (we write + instead of m for the
monoid multiplication of B to reduce parenthesis):

stAXY Z : A(X ,Y)→ A(X⊗Z,Y ⊗Z) stBXY Z : B(X ,Y)→ B(X⊗Z,Y ⊗Z)

pureA
XY : HomC (X ,Y)→ A(X ,Y) >>>A

XY Z: A(X ,Y)×A(Y,Z)→ A(X ,Z)

`XY Z : A(X ,Y)×B(Y,Z)→ B(X ,Z) rXY Z : B(X ,Y)×A(Y,Z)→ B(X ,Z)

eXY : 1→ B(X ,Y) +XY : B(X ,Y)×B(X ,Y)→ B(X ,Y)

20 Compositional Game Theory, Compositionally

These families are (di)natural in X ,Y,Z, satisfy the arrow laws of Appendix B, as well as the bimodule
laws of Definitions 17 and 19, reformulated below in equational form:

`(a >>>A a′)b = `a(`a′ b) r b(a >>>A a′) = r (r ab)a′

`a(b+b′) = `ab+ `ab′ r (b+b′)a = r ba+ r b′ a

`(pureA(f))b = B(f , id)(b) r b(pureA(f)) = B(id, f)(b)

`ae = e r ea = e

`a(r ba′) = r (`ab)a′

We can thus define pureA×B := pureA× e, and the family >>>A×B
XY Z can be explicitly described by:

A(X ,Y)×B(X ,Y)×A(Y,Z)×B(Y,Z)

A(X ,Y)×A(Y,Z)×A(X ,Y)×B(Y,Z)×B(X ,Y)×A(Y,Z)

A(X ,Z)×B(X ,Z)×B(X ,Z)

A(X ,Z)×B(X ,Z)

diagonals and reordering

>>>A×`×r

id×+

In other words,
(a,b)>>>A×B (a′,b′) := (a >>>A a′, `ab′+ r ba′)

Also, recall that the strength on A×B is given by stA×B = stA× stB. Let us now check the arrow laws of
Appendix B. The laws (2) to (5) are straightforward to check, let us do (4) in details:

(4) We need to prove the following equality:(
(a,b)>>>A×B (a′,b′)

)
>>>A×B (a′′,b′′)

=
(
(a >>>A a′)>>>A a′′, `(a >>>A a′)b′′+ r (`ab′+ r ba′)a′′

)
?
=
(
a >>>A (a′ >>>A a′′), `a(`a′ b′′+ r b′ a′′)+ r b(a′ >>>A a′′)

)
= (a,b)>>>A×B ((a′,b′)>>>A×B (a′′,b′′)

)
The first component is the same since A is an arrow. For the second component, we use the bimodule
laws and associativity of +:

`(a >>>A a′)b′′+ r (`ab′+ r ba′)a′′

= `a(`a′ b′′)+ r (`ab′)a′′+ r (r ba′)a′′

= `a(`a′ b′′)+ `a(r b′ a′′)+ r (r ba′)a′′

= `a(`a′ b′′+ r b′ a′′)+ r b(a′ >>>A a′′)

(6) By equational reasoning (using the arrow and bimodule laws), it reduces to to the equality B(id⊗
f , id)(stb) = B(id, id⊗ f)(stb), i.e., to the following commutative diagram:

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 21

B(X ,Y) B(X⊗Z,Y ⊗Z)

B(X⊗Z,Y ⊗Z) B(X⊗Z,Y ⊗Z)

stB

stB B(id⊗ f ,id)

B(id,id⊗ f)

But this diagram commutes by dinaturality of stB.

(7) By equational reasoning, it reduces to the equality B(ρ, id)(b) = B(id,ρ)(stI b), which is true
because B(ρ,ρ−1)(b) = stI(b) by the second diagram of Definition 3.

(8) Equational reasoning leads to the equation B(α, id)(stb) = B(id,α)(st(stb)), which is true because
B(α,α−1)(stb) = st(stb) by the first diagram of Definition 3

(9) Reduces to the equality e = ste, which is the case since e is a strong natural transformation.

(10) By equational reasoning, it reduces to `(sta)(stb′) = st(`ab′) and r (stb)(sta′) = st(r ba′). These
equalities hold because both ` and r are strong natural transformations.

Finally, we check the commutativity of the arrow. By unfolding the definitions and using the fact that
the arrow A is commutative, we are left with the following equation, for (a,b) ∈ A(X ,Y)×B(X ,Y) and
(a′,b′) ∈ A(X ′,Y ′)×B(X ′,Y ′):

`(stX ′ a)(st′Y b′)+ r (stX ′ b)(st′Y a′) = `(st′X a′)(stY ′ b)+ r (st′X b′)(stY ′ a)

Since + is commutative, it is sufficient to prove the following two equalities:

`(stX ′ a)(st′Y b′) = r (st′X b′)(stY ′ a)

`(st′X a′)(stY ′ b) = r (stX ′ b)(st′Y a′)

The first one is exactly the commutativity of B as an A-bimodule. The second one also follows from the
commutativity of B using the naturality and dinaturality of ` and r.

C.3 Definition of a bimodule with costrength

For the sake of completeness, we spell in full details the definition of a costrength, and of a bimodule
equipped with a costrength.

Definition 47 (Costrength). A (right) costrength for a profunctor F : C −7→ C is a family of morphisms
cstX ,Y,Z : F(X⊗Z,Y ⊗Z)→ F(X ,Y) (natural in X ,Y and dinatural in Z) making two diagrams commute:

F((X⊗Z)⊗Z′,(Y ⊗Z)⊗Z′) F(X⊗Z,Y ⊗Z)

F(X⊗ (Z⊗Z′),Y ⊗ (Z⊗Z′)) F(X ,Y)

cstZ′

F(α−1,α) cstZ

cstZ⊗Z′

and

F(X⊗ I,Y ⊗ I)

F(X ,Y)

cstIF(ρ−1,ρ)

Given a profunctor F : C −7→ C with a right costrength, assuming C is symmetric, we can define the left
costrength cst′X ,Y,Z : F(Z⊗X ,Z⊗Y)→ F(X ,Y) by cst′ := cst◦F(σ ,σ).

When an A-bimodule has a strength, the two actions ` and r are required to be strong natural
transformations. When it has a costrength, we require similar conditions:

Definition 48 (Bimodule with costrength). Let A : C −7→C be an arrow. When an A-bimodule B : C −7→C
is equipped with a costrength, we also require the two commutative diagrams below, relating the strength
of A, costrength of B and the left and right actions ` and r:

22 Compositional Game Theory, Compositionally

A(X⊗W,Y ⊗W)×B(Y ⊗W,Z⊗W) B(X⊗W,Z⊗W)

A(X ,Y)×B(Y ⊗W,Z⊗W)

A(X ,Y)×B(Y,Z) B(X ,Z)

`

cstW

stW×id

id×cstW

`

and
B(X⊗W,Y ⊗W)×A(Y ⊗W,Z⊗W) B(X⊗W,Z⊗W)

B(X⊗W,Y ⊗W)×A(Y,Z)

B(X ,Y)×A(Y,Z) B(X ,Z)

r

cstW

id×stW

cstW×id

r

Finally, we also have a counterpart of the commutativity condition, mixing strength and costrength.
Definition 49 (Commutative bimodule with costrength). An A-bimodule B with a costrength is commuta-
tive when the following diagram commutes:

A(X ,Y)×B(Y ⊗X ′,X⊗Y ′) B(Y ⊗X ′,X⊗Y ′)×A(X ,Y)

A(X⊗X ′,Y ⊗X ′)×B(Y ⊗X ′,X⊗Y ′) B(Y ⊗X ′,X⊗Y ′)×A(X⊗Y ′,Y ⊗Y ′)

B(X⊗X ′,X⊗Y ′) B(Y ⊗X ′,Y ⊗Y ′)

B(X ′,Y ′)

∼=

stX ′×id id×stY ′

` r

cst′X cst′Y

C.4 Graded bimodules

Let us start by spelling out the definitions of graded bimodules in more details. All the diagrams are
almost the same as in Section 4.1, except that a few coherence maps are added to relate e.g. B(pq)s and
Bp(qs) using the symmetric monoidal structure of P when needed.
Definition 28. Let A : P → StrProf(C) be a graded arrow. A graded A-bimodule is a functor B : P →
StrProf(C) equipped with strong natural transformations `pq : Ap •Bq→ Bpq and rpq : Bp •Aq→ Bpq

natural in p and q, satisfying the bimodule axioms:
1. ` is a left action, i.e. the following diagrams commute

Ap • (Aq •Bs) (Ap •Aq)•Bs

Ap •Bqs Apq •Bs

Bp(qs) B(pq)s

α

Ap•`qs >>>pq•Bs

`p(qs) `(pq)s

B(α)

HomC •Bp Bp

Ai •Bp Bip

λ

pure•Bp

`ip

B(λ)

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 23

2. r is a right-action (similar diagrams);

3. ` commutes with r, i.e., the following diagram commutes

Ap • (Bq •As) (Ap •Bq)•As

Ap •Bqs Bpq •As

Bp(qs) B(pq)s

α

Ap•r `•As

` r

B(α)

The graded bimodule B is commutative when the following diagram additionally commutes (note that as
in the case of graded arrows, P has to be symmetric for this definition to make sense):

Ap(X ,Y)×Bq(X ′,Y ′) Ap(X⊗X ′,Y ⊗X ′)×Bq(Y ⊗X ′,Y ⊗Y ′)

Bpq(X⊗X ′,Y ⊗Y ′)

Bq(X ′,Y ′)×Ap(X ,Y) Bq(X⊗X ′,X⊗Y ′)×Ap(X⊗Y ′,Y ⊗Y ′)

∼=

stX ′×st′Y

`

st′X×stY ′

B(σ)◦r

Finally, when for all p, Bp additionally has a monoid structure (Bp,mp,ep) w.r.t. the cartesian product
(×,1) in StrProf(C), we also require that ` and r preserve the monoid structure of B:

Ap • (Bq×Bq) (Ap •Bq)× (Ap •Bq)

Ap •Bq Bpq Bpq×Bpq

distributivity

Ap•mq `•`

` mpq

Ap •1 Ap •Bq

1 Bpq

id•eq

! `

epq

Finally, we briefly sketch the proof of Theorem 29. It is almost identical to the one of Theorem 20,
except that we have to take the grades into account.
Theorem 29. Assume A : P → StrProf(C) is a commutative graded arrow, and B : P → StrProf(C)
is a commutative graded A-bimodule, such that (Bp,+p,ep) is a commutative (×,1)-monoid for every p.
Then A×B : P → StrProf(C) is a commutative graded arrow.

Proof. We define pureA×B := pureA× ei, and the family >>>A×B
pq can be explicitly described by:

Ap(X ,Y)×Bp(X ,Y)×Aq(Y,Z)×Bq(Y,Z)

Ap(X ,Y)×Aq(Y,Z)×Ap(X ,Y)×Bq(Y,Z)×Bp(X ,Y)×Aq(Y,Z)

Apq(X ,Z)×Bpq(X ,Z)×Bpq(X ,Z)

Apq(X ,Z)×Bpq(X ,Z)

diagonals and reordering

>>>A
pq×`pq×rpq

id×+pq

24 Compositional Game Theory, Compositionally

In other words,
(a,b)>>>A×B

pq (a′,b′) := (a >>>A
pq a′, `pq ab′+pq rpq ba′)

Finally, the strength on A×B is given by stA×B
p = stAp× stBp. The calculations to check all the axioms of

graded arrows are exactly the same as in the proof of Theorem 20.

D Proofs of Section 5

Theorem 30. Let C be symmetric monoidal, and A : Prof(C) a commutative arrow. Then the profunctor
OpticA : Prof(C ×C op) defined by

OpticA((X ,S),(Y,R)) =
∫ P∈C

A(X ,P⊗Y)×A(P⊗R,S)

is also a commutative arrow.

Proof. By Proposition 27, and using that coends can be reduced to colimits using the twisted arrow
category Tw(C op)op [21, Remark 1.2.3], it is enough to show that the assignment OpticTw

A : Tw(C op)op→
StrProf(C ×C op) given by

OpticTw
A (P

f←− P′,(X ,S),(Y,R)) = A(X ,P′⊗Y)×A(P⊗R,S)

is a commutative graded arrow.

The graded unit is constructed as follows:

HomC×C op((X ,S),(Y,R))

HomC (X ,Y)×HomC (R,S)

HomC (X , I⊗Y)×HomC (I⊗R,S)

A(X , I⊗Y)×A(I⊗R,S)

=

(λ−1◦−)×(−◦λ)

pureA×pureA

This is natural since pureA and λ are. The graded multiplication is given by

A(X ,P⊗X ′)×A(P′⊗S′,S)×A(X ′,Q⊗X ′′)×A(Q′⊗S′′,S′)

A(X ,P⊗X ′)×A(P′⊗S′,S)×A(P⊗X ′,P⊗Q⊗X ′′)×A(P′⊗Q′⊗S′′,P′⊗S′)

A(X ,P⊗X ′)×A(P⊗X ′,P⊗Q⊗X ′′)×A(P′⊗Q′⊗S′′,P⊗S′)×A(P⊗S′,S)

A(X ,P⊗Q⊗X ′′)×A(P′⊗Q′⊗S′′,S)

id×id×st′P×st′P′

∼=

>>>A×>>>A

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 25

which is natural in (X ,S), (X ′′,S′′), (P,P′) and (Q,Q′), and dinatural in (X ′,S′) since >>>A and st′ are.
Finally the graded strength is given by st(P,P′),(Z,T) = stAP,Z × stAP′,T . This is obviously natural and

dinatural. The graded monoid axioms and preservation of strength by the graded composition and graded
unit holds by the underlying arrow axioms. Commutativity immediately reduces to commutativity of the
underlying arrow A.

Lemma 32. Let A : Prof(C) be a commutative arrow. Then CtxtCA is a context, i.e. commutative
A-bimodule equipped with a costrength, where

CtxtCA (X ,Y) = OpticA((I, I),(Y,X))

=
∫ M

A(I,M⊗Y)×A(M⊗X , I)

Proof. In this proof we will often use the functorial action of CtxtCA on some two maps f ,g written as

CtxtCA (f ,g) :=
∫ M

A(I,M⊗g)×A(M⊗ f , I)

= ιM(l >>> (M⊗pure(g)),(M⊗pure(f))>>> r)

= 〈l >>> (M⊗pure(g)) | r >>> (M⊗pure(f))〉

where, as in [23, Definition 2.0.1], we write 〈l | r〉 for ιM(l,r) to simplify notation.
We proceed by defining the costrength. The (left) costrength cst′Z of CtxtCA is given by the following

map, where the triple (M, l,r) denotes the optic residual, left, and right maps, respectively:∫ M
A(I,M⊗ (Z⊗Y))×A(M⊗ (Z⊗X), I)→

∫ P
A(I,P⊗Y)×A(P⊗X , I)

(M, l,r) 7→ ιM⊗Z(l >>> pure(α−1),pure(α)>>> r)

Let us prove that the diagram on the right of Definition 47 commutes (the corresponding variant for
the left costrength), i.e., cst′I = CtxtCA (λ

−1,λ). By unpacking the definitions, we need to show that

ιM(l >>> (M⊗pure(λ)),(M⊗pure(λ−1))>>> r) = ιM⊗I(l >>> pure(α−1),pure(α)>>> r)

which reduces to the triangle diagram in the monoidal category C .

For the commutativity of the (left costrength analogous) diagram on the left of Definition 47 there is a
similar argument. We need to show that

cst′Z ◦ cst′Z′ = cst′Z⊗Z′ ◦CtxtCA (α,α−1)

By unpacking these maps, it amounts to proving the following equality

ιM⊗(Z⊗Z′)(l >>> (M⊗pureA(α−1))>>> pureA(α−1),pureA(α)>>> (M⊗pureA(α))>>> r)

= ι(M⊗Z′)⊗Z(l >>> pureA(α−1)>>> pureA(α−1),>>> pureA(α)>>> r)

which eventually reduces to the monoidal pentagon equation in C .

The bimodule actions are defined using composition and the strengths of A, e.g. for the left action
A(X ,Y)×CtxtCA (Y,Z)→ CtxtCA (X ,Z):

26 Compositional Game Theory, Compositionally

A(X ,Y)×
∫ P A(I,P⊗Z)×A(P⊗Y, I)

∫ P A(I,P⊗Z)×A(X ,Y)×A(P⊗Y, I)

∫ P A(I,P⊗Z)×A(P⊗X ,P⊗Y)×A(P⊗Y, I)

∫ P A(I,P⊗Z)×A(P⊗X , I)

∼=

∫ P(id×st′P×id)

∫ P(id×>>>)

This shows CtxtCA is a profunctor with a costrength and a left and a right action. To prove that CtxtCA
is an A-bimodule, we still have to show that these actions obey the coherence laws of Definition 17.

To prove that ` is an action, we need to show that two maps `◦ (A• `) and `◦ (>>> •B)◦α are equal.
Since these maps are natural transformations, this means that for all X ,Y,Z,W ∈C there are corresponding
functions

A(X ,Y)× (A(Y,Z)×CtxtCA (Z,W))→ CtxtCA (X ,W)

Spelling out in detail the action of these two maps, we need to show that 〈l | (M⊗g)>>> (M⊗ f)>>> r〉=
〈l | (M⊗ (g >>> f))>>> r〉, which is easily seen.

When it comes to unitality, we need to show that two maps λ and ` ◦ (pure •B) are equal. Again,
spelling out in detail the action of these maps shows us they are indeed equal.

A similar argument can be used for the right action. As for the commutativity of ` and r, this amounts
to checking whether maps `◦ (A• r) and r ◦ (`•A)◦α are equal, which is once again easy to check by
unfolding the definitions.

We also need to show left costrength interacts well with the bimodule (analogous diagram in Defini-
tion 48). For the left action, we need to show

`◦ (id× cst′W) = cst′W ◦ `◦ (st ′W × id)

Again, by unpacking the definitions we can show these are equal under the coend equivalence relation:〈
l >>> pure(α−1) | ((M⊗W)⊗ f)>>> pure(α)>>> r

〉
=
〈
l >>> pure(α−1) | pure(α)>>> (M⊗ st′W (f))>>> r

〉
Showing that the diagram for the right action commutes is similar.

Lastly, we show CtxtCA is commutative (Definition 49). Unpacking the definitions of the left and the
right maps, we are left with the following equation:〈

l >>> pure(α−1) | pure(α)>>> (M⊗ stX ′(f))>>> r
〉

=
〈
l >>> (M⊗ stY ′(f))>>> pure(α−1) | pure(α)>>> r

〉
It can (albeit with a slightly more involved calculation) be shown that these are equal.

R. Atkey, B. Gavranović, N. Ghani, C. Kupke, J. Ledent & F. Nordvall Forsberg 27

E Additional details for Section 6

E.1 Probabilistic open games using our framework (Example 37)

For probabilistic open games [11], we work with base category Set× (D-Alg)op, where D-Alg is the
category of algebras for the finite distribution monad D . There is a forgetful functor U = Id×|− |op :
Set× (D-Alg)op → Set×Setop to the “usual” base category Set×Setop, where |(A,α)| = A sends an
algebra to its carrier set. Over this category, we construct the arrow for probabilistic open games as
OpProb = colimJ

(
(−→ Lens(U−,U−))×ProbEquibJ

)
, where

(−→ Lens(U−,U−))J(X ,Y) = (J→ Lens(U(X),U(Y)))

ProbEquibJ(X ,Y) = CtxtCA (U(Y),U(X))→D(J)→ Bool

Thus OpProb will yield a symmetric monoidal category by Proposition 27 and Theorem 29 after we prove
following two lemmas: that A = (−→ Lens(U−,U−)) is a commutative graded arrow, and ProbEquib
is a commutative graded A-bimodule.

Lemma 50. (−→ Lens(U−,U−)) is a Setiso-graded arrow.

Proof. By Proposition 26, it is enough to show that Lens(U−,U−) = Lens◦ (Uop×U) is a commutative
arrow, which it is since Lens is.

Lemma 51. ProbEquib is a commutative graded (−→ Lens(U−,U−))-bimodule.

Proof. The actions are given by (we write φi = D(πi)φ)

`J,K : (J→ Lens((X , |S|),(Y, |R|)))×ProbEquibK((Y,R),(Z,T))→ ProbEquibJ×K((X ,S),(Z,T))

`J,K(p,e)((x,k),φ) := (φ = (φ1,φ2))∧ (D#(e(−,k))(D(π1 ◦ p)(−,x))φ1)) φ2

and

rJ,K : ProbEquibJ((X ,S),(Y,R))× (K→ Lens((Y, |R|),(Z, |T |)))→ ProbEquibJ×K((X ,S),(Z,T))

rJ,K(p,e)((x,k),φ) := (φ = (φ1,φ2))∧ e(x,λy.ER[D(λσ .π2(p(σ ,y,k(π1(p(σ ,y))))))φ2])φ1

using the Kleisli predicate lifting D#from [11, Def. 11].

Lemma 52. ProbEquibJ is a commutative (×,1)-monoid for every J.

	Introduction
	Profunctors and Arrows
	Open Games
	Open games, concretely
	A Compositional Treatment of Open Games

	Bimodules and Graded Arrows
	Bimodules
	Graded Arrows and graded bimodules

	Open games based on optics
	Other variants of open games
	Conclusions and future work
	Definition of a bimodule with costrength
	Arrows à la Haskell, and the arrow laws
	Additional details for Section 4
	Cartesian structure on StrProf(C)
	Proof of Theorem 20
	Definition of a bimodule with costrength
	Graded bimodules

	Proofs of Section 5
	Additional details for Section 6
	Probabilistic open games using our framework (Example 37)

