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Abstract. Higher inductive types (HITs) in Homotopy Type Theory
allow the definition of datatypes which have constructors for equalities
over the defined type. HITs generalise quotient types, and allow to define
types with non-trivial higher equality types, such as spheres, suspensions
and the torus. However, there are also interesting uses of HITs to define
types satisfying uniqueness of equality proofs, such as the Cauchy reals,
the partiality monad, and the well-typed syntax of type theory. In each
of these examples we define several types that depend on each other
mutually, i.e. they are inductive-inductive definitions. We call those HITs
quotient inductive-inductive types (QIITs). Although there has been
recent progress on a general theory of HITs, there is not yet a theoretical
foundation for the combination of equality constructors and induction-
induction, despite many interesting applications. In the present paper we
present a first step towards a semantic definition of QIITs. In particular,
we give an initial-algebra semantics. We further derive a section induction
principle, stating that every algebra morphism into the algebra in question
has a section, which is close to the intuitively expected elimination rules.

1 Introduction

This paper is about type theory in the sense of Martin-Lof [29], a theory which
proof assistants such as Coq [7] and Lean [14] as well as programming languages
such as Agda [31] and Idris [8] are based on. Recently, Homotopy type theory
(HoTT) [34] has been introduced inspired by homotopy theoretic interpretations
of type theory by Awodey and Warren [5] and Voevodsky [25; 36].

A central concept in type theory is the concept of inductive definitions, which
allows us to define inductive datatypes like the natural numbers, lists and trees
just by presenting constructors with strictly positive occurrences of the inductive
type being defined. Using the propositions as types explanation, we can use the
same mechanism to inductively define predicates and relations, like an order on
the natural numbers, or the derivability predicate for a logic defined by rules.
Conceptually, HoTT changes what we mean by an inductive definition, because
we view a type not only as given by its elements (points) but also by its equality
proofs (paths). Hence an inductive definition may not only feature constructors for
elements but also for equalities. This concept of higher inductive types (HITs) has
been used to represent the homotopical structure of geometric objects, like circles,
spheres and tori, and gives rise to synthetic homotopy theory in HoTT [32].



However, as already noted in the HoTT Book [34], HITs have also more
quotidian applications, such as a definition of the Cauchy reals for which the use
of the axiom of choice can be avoided when proving e.g. Cauchy completeness.
Instead of defining the real numbers as a quotient of sequences of rationals, a HIT
is used to define them as the Cauchy completion of the rational numbers, with the
quotienting happening simultaneously with the completion definition. Similarly,
a definition of the partiality monad, which represents potentially diverging
operations over a given type, was given using a HIT [2; 13; 35], again avoiding
the axiom of choice when showing e.g. that the construction is a monad [12].

As we see from these examples, the idea of generating points and equalities of
a type inductively is interesting, even if we do not care about the higher equality
structure of types, or if we do not want it. For example: consider trees branching
over an arbitrary type A, quotiented by arbitrary permutations of subtrees. We
first define the type To(A) of A-branching trees, given by the constructors

Ieafo : To(A>
nodeg : (A — To(A)) — To(A).

We then form the binary relation R on Tp(A) that we want to quotient by as
follows: R is the smallest relation such that for any auto-equivalence on A (i.e.
any e : A — A which has an inverse) and f : A — Ty(A), we have a proof
ps.e : R(nodey(f),nodey(f oe)), and, secondly, for g,h : A — To(A) such that
(n: A) = R(g(n),h(n)), we have a proof ¢y, : R(nodey(g),nodeg(h)). We can
then form the quotient type Ty(A)/ R, which is the type of unlabelled trees where
each node has an A-indexed family of subtrees, and two trees which agree modulo
the “order” of its subtrees are equal. For A = 2, these are binary trees where the
order of the two subtrees of each node does not matter.

Now, morally, from a family A — (T5(A)/R), we should be able to construct
an element of the quotient Tp(A)/R. This is indeed possible if A is 2 or another
finite type, by applying the induction principle of the quotient type A times.
However, it seems that, for a general type A, this would require the axiom of
choice [34], which unfortunately is not a constructive principle [15]. But using
a higher inductive type, we can give an alternative definition for the type of
A-branching trees modulo permutation of subtrees.

Ezample 1. Given a type A, we define T(A) : hSet by

leaf : T'(A)
node: (A — T(A)) —» T(A)
mix: (f:A—=T)— (e: A= A) — node(f) = node(f oe).

Note that the fact that T(A) is a homotopy set (see preliminaries below) is
implicitly included in the statement T'(A) : hSet. The construction we were looking
for is now directly given by the constructor node. This demonstration of the
usefulness of higher inductive constructions to increase the strength of quotients
was first discussed in Altenkirch and Kaposi [1], where such set-truncated HITs
are called quotient inductive types (QITs).



Another example of the use of higher inductive types is type theory in type
theory [1], where the well-typed syntax of type theory is implemented as a higher
inductive-inductive [30] type in type theory itself. A significantly simplified version
of this will serve as a running example for us:

Ezample 2. We define the syntax of a (very basic) type theory by constructing
types representing contexts and types as follows. A set Con : hSet and a type
family Ty : Con — hSet are simultaneously defined by giving the constructors

e: Con

ext : (I": Con) — Ty(I") — Con

t: (I': Con) — Ty(I')

o: (I':Con)— (A:Ty(I") — Ty(extI" A) — Ty(I)
Oeq : (I': Con) = (A: Ty(I")) = (B : Ty(extI' 4))

— ext (extI" A) B =con extI' (6 I A B).

For simplicity, we do not consider terms. Contexts are either empty €, or an
extended context ext I" A representing the context I" extended by a fresh variable
of type A. Types are either the base type ¢ (well-typed in any context), or X-types
represented by o I' A B (well-typed in context I" if A is well-typed in context I,
and B is well-typed in the extended context ext I' A). Type theory in type theory
as in [1] has plenty of equality constructors, which play a role as soon as terms are
introduced. To keep the example simple we instead use another equality, stating
that extending a context by A followed by B is equal to extending it by o I" A B.
This equality is given by o.q. Note that it is not possible to list the constructors
of Con and Ty separately: due to the mutual dependency, the Ty-constructor o
has to be given in between of the two Con-constructors ext and oeq-

Despite a lot of work making use of concrete HITs [27; 26; 4; 11; 23; 9; 10],
and despite the fact that it is usually — on some intuitive level — clear for the
expert how the elimination principle for such a HIT can be derived, giving a
general specification and a theoretical foundation for HITs has turned out to be a
major difficulty. Several approaches have been proposed [33; 6; 18; 28], and they
do indeed give a satisfactory specification of HITs in the sense that they cover all
HITs which have been used so far (see related work below). However, to the best
of our knowledge, no approach covers higher inductive-inductive definitions such
as Example 2. The purpose of the current paper is to remedy this. We restrict
ourselves to sets, i.e. to quotient inductive-inductive types (QIITs). This is of
course a serious restriction, since it means that we cannot capture many ordinary
HITs such as e.g. the circle S'. At the same time, all higher inductive-inductive
types that we know of are indeed sets — the Cauchy reals, the surreal numbers,
the partiality monad, type theory in type theory, permutable trees — and will
be instances of our framework, which allows arbitrarily complicated dependency
structures. In particular, we allow intermixing of constructors as in Example 2.

Contributions We give a formal specification of quotient inductive-inductive
types with arbitrary dependency structure. This can be viewed as the generali-



sation of the usual semantics of inductive types as initial algebras of a functor
to quotient inductive-inductive types. A QIIT is specified by (i) its sorts, which
encode the types and type families that it consists of (Section 2), and (ii) by
a sequence of constructors, that in turn are specified by argument and target
functors (Section 3). This is a very general framework, covering in particular point
(Section 3.2) and path constructors (Section 3.4). Each constructor specification
gives rise to a category of algebras, and we establish conditions on the target
functors that allow us to conclude that these categories of algebras are complete
(Section 3.5). This is important, because it allows us to prove the equivalence of
initiality and a principle that we call section induction (Section 4), stating that
every algebra morphism into the algebra in question has a section; this principle
is close to the intuitively expected elimination rules.

A full version of the paper, including all proofs, is available on the arXiv [3].

Related Work Sojakova [33] shows the correspondence between initiality and
induction (a variant of our Theorem 31) for W-suspensions, a restricted class of
HITs. Basold, Geuvers and van der Weide [6] introduce a syntactic schema for
HITs without higher path constructors, and derive their elimination rules. Dybjer
and Moeneclaey [18] give a syntactic schema for finitary HITs with at most paths
between paths, and give an interpretation in Hofmann and Streicher’s groupoid
model [22]. Finally, Lumsdaine and Shulman’s work on the semantics of HITSs in
model categories [28] is similar to an external version of our approach.

Preliminaries We work in a standard Martin-Lof style type theory and assume
function extensionality. We do not assume univalence, but also do not contradict
it; in particular, everything we do works in the type theory from the HoTT
Book [34]. We write U for “the” universe of types, omitting universe indices
in the typical ambiguity style [21]. A type is a set if all its equality proofs are
equal, and hSet is defined as X(A : U).is-set(A); we implicitly treat elements
of hSet as their first projections — this allows us to view hSet as a universe.
By a category, we mean a precategory [34, Def 9.1.1] in the sense of the HoTT
Book (all our categories become univalent categories if univalence is assumed).
We write C = D for functors and X — Y for functions between types. We
denote the obvious category of sets and functions by hSet as well; consequently,
F : A — hSet denotes a type family, while F': C = hSet denotes a functor. For
such a functor F' : C = hSet, we write fCF for the category of elements of F,
whose objects are pairs (X, ) of an object X in C and an element = : FX. For a
function f: X — Y and z,w : X, we write ap f : 2 = w — f(z) = f(w) for the
usual “action of a function to paths”, ~! : x = y — y = x for “path reversal”’, and
rx =y —y=2z— x =z for “path concatenation” [34, Lem 2.2.1, 2.1.1, 2.1.2].

2 Sorts

Single inductive (and quotient inductive) sets are simply elements of hSet. In-
ductive families [17] indexed over some fixed type A are families A — hSet.



For the inductive-inductive definitions we are considering, the situation is more
complicated, since we allow very general dependency structures. Our only re-
quirement is that there is no looping dependency, since this is easily seen to lead
to contradictions, e.g. we do not allow the definition of a family A : B — hSet
mutually with a family B : A — hSet (whatever this would mean). Concretely,
we will ensure that the collection of type formation rules (the type signatures) is
given in a valid order, and we refer to the types used as family indices as the
sorts of the definition. Hence our first step towards a specification of general
QIITs is to explain what a valid specification of the sorts is.

Sorts do not only determine the formation rules of the inductive definitions,
but also the types of the eliminators. To capture this, it is not enough to specify
a type of sorts — in order to take the shape of the elimination rules into account,
we need to specify a category.

Definition 3 (Sort specifications). A specification of the sorts of a quotient
inductive-inductive definition of n types is given by a list

H07H1a" -7Hn—17

where each H; is a functor H; : C; = hSet. Here, Cy := 1 is the terminal category,
and C;+1 is defined as follows:

— objects are pairs (X, P), where X is an object in C;, and P : H;(X) — hSet
18 a family of sets;

— a morphism (f,q) : (X, P) = (Y, Q) consists of a morphism f : X —Y inC,,
and a dependent function g : (z : Hi(X)) = P(x) = Q(H;(f) z) (in hSet).

We say that C,, is the base category for the sort signature Hy, ..., H, 1.

The following examples will hopefully make clear the connection between the
specification in Definition 3 and common classes of data types.

Ezample 4 (Permutable trees). For a single inductive type such as the type of
trees T'(A) in Example 1, the sorts are specified by a single functor Hy : Cy = hSet
which maps the single object x of Cy to the unit type 1. Objects in the base
category C; are thus pairs (x, W), where W : 1 — hSet, and morphisms are given
by f:* — xin 1 (necessarily the identity morphism), together with a dependent
function g : (z : 1) - W(z) — V(z). It is easy to see that this category C; is
equivalent to the category hSet.

Ezample 5 (The finite types). Consider the inductive family Fin : N — hSet of
finite types. Again, this is a single type family, i.e. we are in the case n = 1.
We have Hy(*) := N, and the base category C; is equivalent to the category of
N-indexed families, where objects are families X : N — hSet and morphisms
C1(X,Y) are dependent functions f : (n: N) — X(n) — Y (n).

Ezample 6 (Contexts and types). Let us consider the QIIT (Con, Ty) from Exam-
ple 2. Here, we need two functors Hy, Hj, the first corresponding to Con and the



second to Ty. The first is given by Hy(x) := 1 as in Example 4, since Con is a type
on its own. Next, we need H; : C; = hSet. Applying the equivalence between
C; and hSet established in Example 4, we define H; to be the identity functor
Hy(A) := A, since then Ty : H;(Con) — hSet. The base category Cs is equivalent
to the category Fam(hSet), whose objects are pairs (A, B) where A : hSet and
B : A — hSet, and whose morphisms (A4, B) to (A’, B) consist of functions
f:A— A together with dependent functions g : (z: A) — B(z) — B'(f x).

Ezxample 7 (the Cauchy reals). Recall that the Cauchy reals in the HoT'T book [34]
are constructed by simultaneously defining R : hSet and ~: R x R — hSet (we
ignore the fact that [34] uses U instead of hSet). This time the sorts Hy, H; are
given by Hy(x) := 1 and H;(A) := A x A, corresponding to the fact that ~ is
a binary relation on R. The base category has (up to equivalence) pairs (X,Y)
with Y : X x X — hSet as objects, and morphisms are defined accordingly.

Ezample 8 (The full syntazx of type theory). Altenkirch and Kaposi [1] give the
complete syntax of a basic type theory as a (at that point unspecified) QIIT.
Although this construction is far too involved to be treated as an example in
the rest of this paper (where we prefer to work with the simplified version of
Example 2), we can give the sort signature Hy, Hq, Ho, Hs of this QIIT. Apart
from contexts Con and types Ty, this definition also involves context morphisms
Tms and terms Tm:

Con : hSet Tms : Con x Con — hSet
Ty: Con — hSet Tm: (X(I": Con).Ty(I")) — hSet.
We have:

)i=1 C; = hSet as in Example 4;
Hi(A):=A Cy = Fam(hSet) as in Example 6;

):=Ax A Cjs has objects (A, B,C), where C : A x A — hSet;
H5(A,B,C):= XY AB (4 has objects (A, B,C, D), where D : (EAB) — hSet.

Remark 9. Although we work in type theory also in the meta-theory, we give
the presentation informally in natural language. Formally, the specification of
sorts and base categories of Definition 3 can be defined as an inductive-recursive
definition [19] of the list Hy, ..., H, simultaneously with a function that turns
such a list into a category. Details can be found in Dijkstra’s thesis [16, Sec 4.3].

The main result of this section states that base categories of sort signatures
are complete, i.e. have all small limits. By a small limit, we mean a limit of a
diagram D : Z — C, where the shape category Z has a set of objects, and the
collection of morphisms between any two objects is a set. This result will be
needed later to show that categories of QIIT algebras are complete. Recall that
hSet has all small limits by a standard construction.

Theorem 10 (Base categories are complete). For any sort signature Hy,
.., Hp—1, the corresponding base category C,, has all small limits.

Proof. All proofs can be found in the arXiv version of the paper [3]. O



3 Algebras

Once the sorts of an inductive definition have been established, the next step is
to specify the constructors. In this section, we will give a very general definition
of constructor specifications, although we will mainly focus on two specific kinds:
point constructors, which can be thought of as the operations of an algebraic
signature, and path constructors, which correspond to the axioms.

Similarly to how sorts are specified inductively in Section 2, we construct
suitable categories of algebras by starting with a finitely complete category C
such as the one obtained from a sort signature, specify a constructor on C, and
then extend C using this constructor specification to get a new finitely complete
category C'. This process is repeated until all constructors have been added, and
we obtain the sought-after inductive type as the underlying set of an initial object
of the category at the last stage, provided this initial object exists. In the case of
the inductive definition of natural numbers, this process will turn out as follows:

— we start with hSet as our base category (only one trivial sort, as in Example 4);

— we add a point constructor for the constant corresponding to 0; the category
of algebras at this stage is the category of pointed sets;

— we add a second point constructor for the operation corresponding to suc;
the category of algebras at this stage is the category of sets equipped with a
point and a unary operation;

— the set of natural numbers, together with its usual structure, can now be
regarded as an initial object in the category of algebras just constructed.

3.1 Relative Continuity and Constructor Specifications

Roughly speaking, constructors at each stage are given by pairs of hSet-valued
functors F and G on C, where G is continuous (i.e. preserves all small limits). The
intuition is that F specifies the arguments of the constructor, while G determines
its target. For instance, in the example of the natural numbers when specifying
the constructor suc : N — N, C is the category of pointed sets, and both F' and G
are the forgetful functor to hSet. The continuity condition on G is needed for the
corresponding category of algebras to be complete. Intuitively, this expresses that
a constructor should only “construct” elements of one of the sorts, or equalities
thereof.? In particular, a constant functor is usually not a valid choice for G.

Unfortunately, this simple description falls short of capturing many of the
examples of QIITs mentioned in Section 1. The problem is that we want G to
be able to depend on the elements of F'. However, since F' is assumed to be an
arbitrary functor, its category of elements is not necessarily complete, and so we
need to refine the the notion of G being continuous to this case.

3 More concretely, elements of a sort correspond to representable functors for algebras
over a single generator for that sort, while equalities correspond to algebras with no
generators and the given equality as the only relation. Clearly, representable functors
are continuous, and the converse holds for reasonable functors (e.g. accessible ones).
However, we do not attempt to make this construction precise here, and the following
results do not depend on it.



Definition 11 (Relative continuity). Let C be a category, Co a complete
category, and U : C = Cqy a functor. If I is a small category, and X : I — C is a
diagram, we say that a cone A — X in C is a U-limit cone, or limit cone relative
to U, if the induced cone UA — UX is a limit cone in Cy. A functor C = hSet
is continuous relative to U if it maps U-limit cones to limit cones in hSet.

In the special case Cy = hSet, the functor U in Definition 11 is continuous
relative to itself. Also note that if C is complete and U creates limits, then relative
continuity with respect to U reduces to ordinary continuity. If C is a complete
category, and F' : C = hSet is an arbitrary functor, the category [ “F of elements
of F is equipped with a forgetful functor into C. We will implicitly consider
relative limit cones and relative continuity with respect to this forgetful functor,
unless specified otherwise. Note that if C is complete and F' is continuous, then
i “F is also complete, and relative continuity of functors on [ “F is the same as
continuity, as observed above.

We can now give a precise definition of what is needed to specify a constructor:

Definition 12 (Constructor specifications). A constructor specification on
a complete category C is given by:

— a functor F : C = hSet, called the argument functor of the specification;
— a relatively continuous functor G : fCF = hSet, called the target functor.

Given a constructor specification, we can define the corresponding category
of algebras. In Theorem 25, we will see that the assumptions of Definition 12
guarantee that this category is complete.

Definition 13 (Category of algebras). Let (F,G) be a constructor specifi-
cation on a complete category C. The category of algebras of (F,G) is denoted
C.(F,G), and is defined as follows:

— objects are pairs (X, 0), where X is an object of C, and 0 : (x : FX) — G(X, z)
is a dependent function (in hSet);

— morphisms (X,0) — (Y,9) are given by morphisms f : X =Y in C, with
the property that for all x : FX,

V(E(f)z) = G()0x),
where f: (X,x) — (Y, F(f)x) is the morphism in ch determined by f.

We think of C.(F,G) as a category of “dependent dialgebras” [20]. Note that
there is an obvious forgetful functor C.(F,G) — C.

Similarly to how we defined sort specifications (Definition 3), we now have all
the necessary notions in place to be able to give the full definition of a QIIT.

Definition 14 (QIIT descriptions). A QIIT description is given by

— a sort specification Hy, ..., Hyp_1;



— a list of constructor specifications (Fo, Go), .-, (Fn_1,Gn_1) on Bo,...,Bn_1
respectively, where By is the base category of the given sort specification, and
Biy1 is the category of algebras of (F;, G;).

For Definition 14 to make sense, the categories B; need to be complete, since
constructor specifications are only defined on complete categories. This will follow
from Theorem 25.

Ezample 15 (Permutable trees). The constructor leaf : T(A) from Example 1
can be specified by functors F : hSet = hSet and Gy : fhsetFO = hSet, where
Fy(X) :=1 and Go(X,1) := X. Note how Fy specifies the (trivial) arguments of
leaf, and Gy the target. Next the constructor node : (A — T'(A)) — T(A) can be
specified by functors F : hSet, = hSet and Gy : fhset'Fl = hSet, where hSet, is
the category of pointed sets (we think of the point as the previous constructor

leaf): F} and G, are defined as F(X,l) := A — X and G1(X, 1, f) := X, so that
node : (f : F1(T'(A),leaf)) = G1(T(A), leaf, f).

Theorem 18 will show that Gy and G are relatively continuous.

The corresponding category of algebras for this constructor specification
(Fy,Gy) for node is equivalent to the category whose objects are triples (X, [, n)
where X : hSet, [ : A, and n : (A — X) — X. After specifying also the mix-
constructor, the new category of algebras further contains a dependent function
p:(f:A=X)=(e: X=2X)—=n(f)=n(foe).

Ezxample 16 (Contexts and types). The constructor oeq of type
(I': Con)(A: Ty(I)(B : Ty(extI' A)) — ext (ext ' A) B =con extI' (6 I' A B)

from Example 2 is specified in the context of the previous constructors ¢, ext

and o by functors F': C = hSet and G : fCF = hSet, where C is the category of
algebras of the previous constructors, with

F(C,T,e,ext,0) :=X(I":C).X(A:T(I").T(ext,[' A)

and
G(C,T,e,ext,0,IA,B) :==ext(extx['A) B=c ext['(c ' AB).

Theorem 23 will show that G is relatively continuous. The corresponding category
of algebras for this constructor specification has objects tuples (C, T, e, ¢, b, s, Seq)
where (C,T,e,c,b,s) is an algebra for the previous constructors, and

Seq: ([:C) = (A:T(IN) - (B:T(cl'A)) »c(cI'A)B=c cI'(s'AB).

3.2 Point Constructors

If C is the base category for a sort signature as in Definition 3, we can define
specific target functors C = hSet which are guaranteed to be relatively continu-
ous. Constructors having those as targets are referred to as point constructors.
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Intuitively, a point constructor is an operation that returns an element (point)
of one of the sorts. The corresponding target functor is the forgetful functor
that projects out the chosen sort. However, sorts can be dependent, so such a
projection needs to be defined on a category of elements.

Specifically, let C be a finitely complete category, H : C = hSet a functor, and
C’ the extended base category with one more sort indexed over H. Recall from
Definition 13 that the objects of C’ are pairs (X, P), where X is an object of C,
and P is a family of sets indexed over HX. Let Vg : C' = C be the forgetful
functor. We define the base target functor corresponding to H to be the functor

Uy : fC,(Ho Vi) = hSet given by
Uy(X,P,x)=P(x).

In other words, given an object X of C, a family P over HX, and a point x in
the base, the functor Uy returns the fibre of the family P over z. The action of
Upg on morphisms is the obvious one.

Ezample 17 (Permutable trees). In Example 15, the functor Gy : fhsetFo = hSet

specifying the target of leaf is the composition of the forgetful [ hseth = hSet with
the base target functor for the only sort, in this case the identity id : hSet = hSet.

Note that Uy = id in Example 17 is relatively continuous, as required by
Definition 12. In the rest of this section, we will show that this is true in general.
Given a category C and a functor F' : C = hSet, it is well known that the
slice category over F' of the functor category C = hSet is equivalent to the
functor category [ °F = hSet (see for example [24, Prop 1.1.7]). Given a functor
G : C = hSet and a natural transformation o : G — F, we will refer to the functor
G: Ik °F = hSet corresponding to « as the functor of fibres of .. Concretely, G
maps an object (X, x), where x : F'X, to the fibre of ax over z. The following
theorem is proved by noting that Uy is a functor of fibres.

Theorem 18 (Base target functors are relatively continuous). Let C be
a complete category, H : C = hSet any functor, and C' the extended base category
corresponding to H. Then the base target functor Uy is relatively continuous. O

3.3 Reindexing Target Functors

In many cases, we can obtain suitable target functors by composing the desired
base target functor with the forgetful functor to the appropriate stage of the
base category. When building constructors one at a time, it will follow from
Theorem 25 and Theorem 10 applied to the previous steps that this forgetful
functor is continuous, and the relative continuity of the target functor will follow.
In more complicated examples, composing with a forgetful functor is not quite
enough. We often want to “substitute into” or reindex a target functor to target a
specific element. For example, in the context of Example 2, consider a hypothetical
modified o constructor of the form

o'+ (X(I": Con).X(A: Ty(I"). Ty(ext I' A)) — Ty(ext I" A).
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We want the target functor to return the set Ty(ext I' A), and not just Ty(z) for
a new argument z, which is the result of the base target functor. We can obtain
the desired target functor as a composition

fCF S fFam(hSet)7T1 Un hSet, (1)

where C is the category with objects tuples (C,T,e,ext), F : C = hSet is
the functor giving the arguments of the constructor o', Uy is the base tar-
get functor corresponding to the second sort, and S is the functor defined by
S(C,T,e,ext,I'A,B) = (C,T,extI" A).

Since the functors S that we compose with in order to “substitute” are of a
special form, the resulting functor will still be relatively continuous when starting
with a relatively continuous functor. This is made precise by the following result:

Lemma 19 (Preservation of relative limit cones). ALt .nB
Suppose given is a commutative diagram of categories and ) )
functors as shown on the right, where Cy and Dy are com- v l lv
plete, and G maps U-limit cones to V-limit cones. Then C——=17DD
F maps (U o U')-limit cones to (V o V')-limit cones. In ¢
particular, if C and D are complete and G is continuous, Ul lv
then F' preserves relative limit cones. a Co Do

Example 20. Starting from the situation

in (1) we can form the diagram shown on

fCF s fFarn(hSet)7r1 Un_hset  theleft, where V' : C = Fam(hSet). is the

forgetful functor and hence continuous.

J/ l It follows from the second statement of

v Lemma 19 that S preserves relative limit

C ——— Fam(hSet) cones, hence G = Uy o S is relatively
continuous by Theorem 18.

3.4 Path Constructors

Path constructors are constructors where the target functor G returns an equality
type. They can e.g. be used to express laws when constructing an initial algebra
of an algebraic theory as a QIT. We saw an example of this in Example 1, where
we had a path constructor of the form

mix: (f:A—=T)— (e: A= A) — node(f) = node(f oe).

The argument functor for mix is entirely unproblematic. However, it is perhaps
not so clear that the target functor, which sends (X, 1, n, f,e) to the equality type
n(f) =x n(f oe), is relatively continuous. The aim of the current section is to
show this for any functor of this form. We first observe that the prototypical such
equality functor is relatively continuous, and then show that any other target
functor for a path constructor can be obtained by substitution using Lemma 19.

Definition 21. Let Eq: fhset(id x id) = hSet be the functor defined on objects
by Eq(X, z,y) := x =x y and on morphisms by Eq(f, ps, py) := ps-(ap f —)-p;l.
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It is not hard to see that Eq is a functor. Furthermore, Eq is the functor of
fibres of the obvious diagonal natural transformation A :id — id x id.

Lemma 22. The standard equality functor Eq is relatively continuous. a

The lemma we have just given is central to the observation that a large class
of equality functors are suitable targets for constructors:

Theorem 23 (Equality functors are relatively continuous). Let C be a
complete category, F : C = hSet any functor, and G : ch = hSet a relatively
continuous functor. Suppose given two global elements l,r of G, i.e. natural
transformations l,r : 1 — G. The map

c
Eqo(l,r) / F — hSet

with Eqg(1,7)(Y) = (ly =¢(v) ry) eatends to a relatively continuous functor. 0

Ezample 2/ (Permutable trees). The target of the mix constructor from Example 1
can be obtained as an equality functor in this sense. We take G to be the
underlying sort, which is relatively continuous by the results of the previous
section. The global elements [ and r are defined by l(x i n,te) = n(f) and
T(x,n,f,e) ‘= n(f oe). Their naturality can easily be verified directly.

Iterating equality functors, one can also express higher path constructors, but
in our limited setting of inductively defined sets, there is little reason to go beyond
one level of path constructors — higher ones will have no effect on the resulting
inductive type. However, we believe that the ease with which Theorem 23 can be
applied iteratively will be an important feature when generalising our technique
to general higher inductive types. We discuss this further in Section 5.

3.5 Categories of Algebras are Complete

Recall from Definition 13 that the category of algebras C.(F, G) for a constructor
specification (F,G) on a complete category C has “dependent (F,G)-dialgebras”
as objects, and maps that commute with the dialgebra structure as morphisms.
In this section, we will show that C.(F,G) is complete, and that its forgetful
functor is continuous. The significance of this result is twofold: First of all, it
enables the use of limits when reasoning about algebras; in particular, we will
show in Section 4 how, using products and equalisers, one can extend the classical
equivalence between initiality and induction for ordinary inductive types to our
setting. Secondly, it goes a long way towards establishing existence of initial
algebras; since a category of algebras over n+ 1 constructors is complete, and the
forgetful functor to the category of algebras over the first n preserves limits, the
adjoint functor theorem says that this functor has a left adjoint if and only if it
satisfies the solution set condition. Applying this argument at every stage, we get
a left adjoint for the forgetful functor down to hSet, and in particular an initial
object. There is no reason to expect the solution set condition to hold at this
generality, but we expect it to follow from appropriate “accessibility” conditions
on the argument functors. This is discussed further in Section 5.
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Theorem 25 (Categories of algebras are complete). Let (F,G) be a con-
structor specification on a complete category C. Then C.(F,G) is complete. O

4 Elimination Principles

So far, we have given rules for specifying a QIIT by giving a sort signature
and a list of constructors. As type-theoretical rules, these correspond to the
formation and introduction rules for the QIIT. In this section, we introduce the
corresponding elimination rules, stating that a QIIT is the smallest type closed
under its constructors. We show that a categorical formulation of the elimination
rules is equivalent to the universal property of initiality.

4.1 The Section Induction Principle

The elimination principle for an algebra X states that every fibred algebra over X
has a section, where a fibred algebra over X is an algebra family “Q) : X — hSet”,
and a section of it a dependent algebra morphism “(x : X) — Q(x)”.* The usual
correspondence between type families and fibrations extends to algebras, and
so we formulate the elimination rule for X as X being section inductive in the
category of algebras in the following sense:

Definition 26 (Section inductive). An object X of a category C is section
inductive if for every object Y of C and morphism p : Y — X, there exists
s: X =Y such that pos=idx.

For an algebra X, the existence of the underlying function(s) X — Y corre-
sponds to the elimination rules, while the fact that they are algebra morphisms
corresponds to the computation rules.

Ezample 27 (Permutable trees). Consider permutable-tree algebras, e.g. tuples
(X,l,n,p) as in Example 15. A fibred permutable-tree algebra over (X,1,n,p)
consists of @ : X — hSet together with m; : Q(I) and

mp: (f: A= X) = (g:(a:A) = Q(fa)) = Qnf)
mp: (fiA=X)—=(g:(a:A) = Q(fa)) = (e: A= A)
—mn fg =apQplmn(foe)(goe)

Here the type  =[p] y is the types of equalities between elements x : A and y : B
in different types, themselves related by an equality proof p : A = B. This data
can be arranged into an ordinary algebra X' (z : X).Q(z), together with an algebra
morphism 71 : (X(z : X).Q(x)) — X. A section of 7 is a dependent function
h:(x:X)— Q(z). Since h comes from an algebra morphism, we further know
e.g. h(l) = my and h(n f) = m, f (ho f). Conversely, every algebra morphism

4 See Dijkstra’s thesis [16, Sec 5.4] for the general definition of fibred algebras and
their morphisms — here we restrict ourselves to examples only for space reasons.
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g: (X" U',n,p") = (X,l,n,p) gives rise to a fibred algebra (Q, m;, m,,m,) by
considering the fibres Q(z) = X(y : A’).g(y) = x of p. The points m;, m,, and
the path m,, arise from the proof that g preserves I', n’ and p’.

Ezample 28 (Contexts and types). For context-and-types algebras from Exam-
ple 16, a fibred algebra over (C,T,e,c,b,s, seq) consists of @ : C' — hSet and
R:(z:C)— T(x) = Q(x) — hSet, together with m. : Q(e) and

mp: (I':C)—= (x: Q") - R(I,bI,x)

(

me: (IN:C)—= (z:Q(IN) = (A: T(I') = R(ILA,z) = Q(cT" A)
(

ms: (I':C) (

-
= (z: Q)= (A:T(IN) = (y: R(I[A,x) = (B :T(cI A))
—(z:R(c['A,Bym. 'z Ay)) = R(I',s' AB,z)
= Q) = (A3 ) = (3 AU A,)
— (B:T(cI'A)) = (z: R(c"A,B,m. 'z Avy))
—>mc(cFA) (meI'cAy) Bz =ap Q (Seq I AB)]
melxz (s’ AB)(msI'x Ay B z)

Again, this data can be arranged into an ordinary algebra with base C’ : hSet,
T" : C" — hSet, where C' = ¥(z : C).Q(z) and T'(z,q) = X(y : T'(z)).R(x,y, q),
together with an algebra morphism (71, 7m) : (C',T") — (C,T'). A section of this
morphism gives functions f: (z: C) - Q(z) and g: (z : C) = (y : T(z)) —
R(z,y, f ) that preserve the algebra structure.

A general account of the equivalence between the usual formulation of the
elimination rules and the section induction principle is in Dijkstra [16, Sec 5.4].

4.2 Initiality, and its Relation to the Section Induction Principle

The section induction principle for an algebra X matches our intuitive under-
standing of the elimination rules for X quite well, but it is perhaps a priori not
so clear that e.g. satisfying it defines an algebra uniquely up to equivalence. In
this section, we show that this is the case by proving that the section induction
principle is equivalent to the categorical property of initiality. Recall that a type
is contractible if it is equivalent to the unit type [34, Def 3.11.1].

Definition 29 (Initiality). An object X of a category C is (homotopy) initial
if for every object Y of C, the set of morphisms X — Y is contractible.

It is easy to see that initiality implies section induction, while the converse
requires additional structure on C:

Lemma 30. If an object X in a category C is initial, then it is section inductive.
If C has finite limits and X is section inductive, then X is initial. O

From here, we can show the main theorem of the current section. The proof
uses the fact that both statements involved are mere propositions, i.e. they have
at most one proof.
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Theorem 31 (Initiality = section induction). An object X in a in a category
of algebras C.(F,G) being initial is equivalent to it being section inductive. a

As an application, we can now reason about QIITs using their categories of
algebras. For instance, we get a short proof of the following fact:

Corollary 32. The interval is equivalent to the unit type.

Proof. By Theorem 31, the interval is the initial object in the category with
objects X(X : hSet).X(z : X).X(y : X).x =x y, while the unit type is the initial
object in the category with objects X'(X : hSet).X. By contractibility of singleton
types [34, Lem 3.11.8], the former is equivalent to the latter, and since initiality
is a universal property, the two initial objects coincide up to equivalence. a

5 Conclusions and Further Work

We have developed a semantic framework for QIITs: A QIIT description gives
rise to a category of algebras, and the initial object of this category represent
the types and constructors of the QIIT. This generalises the usual functorial
semantics of inductive types to a more general setting. So far we have verified the
appropriateness of this setting by means of examples. In future work, we would
like to explicitly relate the syntax of QIITs to the corresponding semantics.
Our categories of algebras are complete. This is helpful for the metatheory
of QIITs, as demonstrated by the proof of initiality being equivalent to section
induction (Theorem 31), justifying elimination principles. Of course, completeness
is not by itself sufficient to derive the existence of initial algebras, but it suggests
that it should be possible to restrict the argument functors to guarantee this,
possibly by reducing QIITs to a basic type former playing an analogous role
to that of W-types for inductive types. We believe that completeness of the
categories of algebras allows an existence proof using the adjoint functor theorem.
We have restricted our attention to QIITs, but we believe that our construction
is applicable to general HITs (and even HIITs). While at first glance such an
extension of our framework seems to require an internal theory of (co, 1)-categories,
we believe that it is enough to keep track of only a very limited number of
coherence conditions, making this extension possible even without solving the
well-known problem of specifying an infinite tower of coherences in HoTT.
Other possible future directions include the combination of QIITs and induction-
recursion, and the possibility of generalising coinductive types along similar lines.
These generalisations should be driven by examples, similar to how the examples
discussed in the current paper have motivated the need for a theory of QIITs.
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