
Variations on Inductive-Recursive Definitions
Neil Ghani1, Conor McBride1, Fredrik Nordvall Forsberg1, and
Stephan Spahn2

1 University of Strathclyde, Glasgow, Scotland
2 Middlesex University, London, England

Abstract
Dybjer and Setzer introduced the definitional principle of inductive-recursively defined families
— i.e. of families (U : Set,T : U→ D) such that the inductive definition of U may depend on the
recursively defined T — by defining a type DS D E of codes. Each c : DS D E defines a functor
J c K : Fam D → Fam E, and (U,T) = µJ c K : Fam D is exhibited as the initial algebra of J c K.

This paper considers the composition of DS-definable functors: Given F : Fam C → Fam D

and G : Fam D → Fam E, is G ◦ F : Fam C → Fam E DS-definable, if F and G are? We show
that this is the case if and only if powers of families are DS-definable, which seems unlikely. To
construct composition, we present two new systems UF and PN of codes for inductive-recursive
definitions, with UF ↪→ DS ↪→ PN. Both UF and PN are closed under composition. Since PN
defines a potentially larger class of functors, we show that there is a model where initial algebras
of PN-functors exist by adapting Dybjer-Setzer’s proof for DS.

1998 ACM Subject Classification F.3.3, F.4.1.

Keywords and phrases Type Theory, induction-recursion, initial-algebra semantics.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.63

1 Introduction

Codes for inductive-recursive definitions were introduced in a series of papers by Dybjer and
Setzer [6, 7, 8]. An initial motivation [5] was to give generic rules that can be specialised to
define most types occurring in Martin-Löf Type Theory [13], including inductive families
[4] and Tarski-style universes [14]. An inductive-recursive definition defines not only a type,
but more generally a family (U : Set,T : U → D) of types for some D : Set1, where the
inductive definition of U may depend on the recursively defined T; examples can be found in
Section 2. To represent such definitions, Dybjer and Setzer introduced a type DS D E of
codes representing functors Fam D → Fam E. The family (U,T) = µJ c K : Fam D arises as
the initial algebra of a functor J c K : Fam D → Fam D represented by a code c : DS D D.

Induction-recursion is important as it is the strongest form of inductive definition we
have, surpassing, for example, inductive definitions [10] and inductive families [2]. This paper
asks the following fundamental and significant question:

Is the theory of inductive-recursive definitions, as currently understood, optimal?

We still believe that conceiving of inductive-recursive definitions as initial algebras in the
category Fam D is the right thing to do. However, the current type of codes for generating
such functors may not actually be optimal for this purpose. We come to this conclusion
by considering the question of composition of codes. Given J c K : Fam C → Fam D and
J d K : Fam D → Fam E represented by Dybjer-Setzer codes c : DS C D and d : DS D E

respectively, is J d K ◦ J c K : Fam C → Fam E DS-definable, i.e. is there a code d • c : DS C E

© Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 63; pp. 63:1–63:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


63:2 Variations on Inductive-Recursive Definitions

such that J d • c K = J d K ◦ J c K? A positive answer would allow modularity in datatype
definitions, as one can then replace all inductive arguments (U, T ) in a datatype by F (U, T )
for any DS-definable functor F by composing with the code for F . For instance, a code
for an inductive definition of multiway trees, where each node has a list of subtrees, can
be constructed by composing a code for lists with itself. Other classes of data types such
as inductive definitions or inductive families are closed under composition [10] — it is a
property naturally to be expected from the viewpoint of initial algebra semantics.

It is currently unknown whether DS is closed under composition, although we suspect
that it is not. In support of this claim, we show that DS is closed under composition if and
only if powers A→ J c K of codes are definable (Section 2, where we also recall Dybjer and
Setzer’s codes). Since such a power operation is unlikely to exist, we are led to investigate
alternative systems of inductive-recursive definitions that are closed under composition.

We first introduce a system UF of uniform codes for inductive-recursive definitions, and
their decoding (Section 3). This system can be regarded as a subsystem of DS, and as
such, it is clear that UF-functors have initial algebras since DS-functors do. The novum
is that uniformity of codes can be exploited to define powers, which in turn means that a
composition operator for uniform codes is obtainable, i.e. we have isolated a subclass of
DS-functors that is closed under composition. Next we introduce another system PN of
polynomial codes, and their decoding (Section 4). Notably, PN contains a constructor for
the dependent product of codes which ensures that PN is closed under composition. PN
is a supersystem of DS and hence we cannot inherit initial algebras for PN from DS, but
must prove their existence directly: we do so by adapting Dybjer-Setzer’s proof to our more
general setting. The introduction of new alternative formulations of induction-recursion has
the potential to have significant impact if they — as we believe to be the case — have better
properties than the current one and hence come to supplant the current formulation.

Type-theoretic notation and assumptions We work informally in a standard type theory
with dependent function spaces

(
x : A

)
→ B(x) (written A→ B if x does not occur in B),

dependent pair types
(
Σx : A

)
B(x) (written A× B if x does not occur in B), coproducts

A+B with injections inl and inr, and an identity type which we shall simply write as a = b.
Finite enumerations are denoted by {a1, a2, . . . , am}; instances include 0 = {}, 1 = {?} and
2 = {ff, tt}. We write anonymous functions as (a 7→ b), or (_ 7→ b) when the argument is
not used by the function. We assume two universes à la Russell Set : Set1, with A : Set
implying A : Set1. We assume function extensionality, i.e. that pointwise equal functions are
equal. This is essential in our development. For simplicity, we also assume uniqueness of
identity proofs, i.e. that if p : a = b and q : a = b, then p = q, but this assumption should
be avoidable with a little more work. In any case, both of these assumptions are valid in
extensional Type Theory [14], which readily has a set-theoretic interpretation. The content
of this paper (except for the set-theoretical model of PN) has been formalised in Agda1.

2 Dybjer-Setzer Codes DS for Inductive-Recursive Definitions

We recall the system of Dybjer-Setzer codes DS, how codes represent inductive-recursive
definitions, and finally prove powers to be necessary and sufficient for DS to be closed under
composition.

1 Available at http://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/variantsIR/.

http://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/variantsIR/


N. Ghani, C. McBride, F Nordvall Forsberg and S Spahn 63:3

2.1 Definition of DS and its Decoding
For D, E : Set1, the type DS D E consists of codes that represent functors Fam D → Fam E

describing the constructors of inductive-recursive definitions.

I Definition 1. Given D,E : Set1, the large type DS D E : Set1 of Dybjer-Setzer codes is
inductively defined by the following generators:

ι : E → DS D E

σ :
(
A : Set

)
→ (A→ DS D E)→ DS D E

δ :
(
A : Set

)
→ ((A→ D)→ DS D E)→ DS D E

Here ι shall represent trivial functors, σ sums of functors, and δ dependent sums. See Dybjer
and Setzer [7] for a more in-depth explanation, and the examples below for intuition. Note
that Dybjer and Setzer only considered systems of the form DS D D, i.e. where E = D. For
our purposes the more general formulation will be clearer; it also accounts for the fact that
DS D E is functorial covariantly in E and contravariantly in D.

I Example 2 (W-types). By choosing D = E = 1, we can use DS 1 1 to represent inductive
definitions. Let us encode Martin-Löf’s type W S P : Set of wellfounded trees, where S : Set
encodes the possible shapes of the tree, and P : S → Set maps each shape to its branching
degree. This type is inductively defined by the constructor

sup :
(
s : S

)
→ (P (s)→W S P )→W S P

Here we see that sup takes one non-inductive argument s : S, followed by an inductive
argument P (s) → W S P , which depends on the first non-inductive one. We will see
shortly in Example 5 that W S P can be represented by the code cW S P : DS 1 1 with
cW S P = σ S (s 7→ δ P (s) (_ 7→ ι ?)) where σ is used for the non-inductive argument and δ
for the inductive one, finally finishing off with a trivial ι.

I Example 3 (A universe closed under W-types). We get considerably more power by choosing
D = E = Set. Now we can represent a universe containing 2 that is closed under W-types by
the code c2W : DS Set Set, where

c2W = σ {two,w} (two 7→ ι 2; w 7→ δ 1 (X 7→ (δ (X ?) (Y 7→ ι (W (X ?) Y )))))

First we offer a choice between two constructors: two and w using σ. In the two case, we
use an ι code to ensure the name two decodes to 2; in the w case, we ask for a name s for
the shapes of the W-type using δ 1, and for every element in the decoding of that name, we
ask for a name for the branching degrees using δ (X?) — here X : 1→ Set represents the
decoding of the name s. The rest of the code gets to depend on the decoding Y : X?→ Set of
this family, and we finish by declaring that this constructor decodes to W (X?) Y . Note that
this code can be written as a coproduct of codes c2 +DS cW: generally for c d : DS D E, we
define their coproduct c+DS d = σ 2 (ff 7→ c ; tt 7→ d). We will return to this in Example 11.

Decoding of Dybjer-Setzer codes as functors on families make the above intuitions precise.
For D : Set1, Fam D is the category where objects are families of Ds, i.e. pairs (A,P ) where
A : Set and P : A → D; a morphism (A,P ) → (B,Q) consists of a function f : A → B

together with a proof that Q(f(a)) = P (a) for each a : A. For future reference, we note
that Fam is a functor with action on morphisms Fam(h) (A,P ) = (A, h ◦ P ) and moreover
a monad with unit ηFam(e) = (1,_ 7→ e) and multiplication µFam : Fam (Fam D)→ Fam D

given by µFam(A,P ) = (
(
Σx : A

)
(P (x)0), (x, y) 7→ (P (x))1 y) where we have written P (x)0

and P (x)1 for the components of the family P (x) = (P (x)0, P (x)1).

MFCS 2017



63:4 Variations on Inductive-Recursive Definitions

I Definition 4. Let D,E : Set1 and c : DS D E. We define the decoding of c as the
functor J c K : Fam D → Fam E given by J c K(A,P ) = (J c K0(A,P ), J c K1(A,P )), where
J _ K0 : DS D E → Fam D → Set and J _ K1 :

(
c : DS D E

)
→

(
Z : Fam D

)
→ J c K0 Z → E

are defined by

J ι e K0 (U, T ) = 1 J ι e K1 (U, T ) ? = e

J σ A f K0 (U, T ) =
(
Σa : A

)
(J f a K0 (U, T )) J σ A f K1 (U, T ) (a, x) = J f a K1 (U, T ) x

J δ A F K0 (U, T ) = J δ A F K1 (U, T ) (g, x) =(
Σg : A→ U

)
(J F (T ◦ g) K0 (U, T )) J F (T ◦ g) K1 (U, T ) x

I Example 5. For decoding Example 2, note that Fam 1 ∼= Set since the second component
of such a family is trivial. Thus, if (W,T ) : Fam 1, then

J cW S P K0(W,T ) =
(
Σs : S

)(
(P (s)→W )× 1

)
(1)

such that indeed sup : J cW S P K0(W S P,_) → W S P (up to isomorphism), and initial
algebras of J cW S P K : Fam 1 → Fam 1 are W-types. Instead of leaving the fibres of the
family trivial, we can “upgrade” the given code to do something interesting in the whole
family. For instance, if we redefine cW S P : DS Set Set by

cW S P = σ S (s 7→ δ P (s) (Y 7→ ι
((
x : P (s)

)
→ Y x

)
))

the index type decoding (1) stays the same, but the decoding J cW S P K1(W,T ) applies T
everywhere in the given structure. In particular, if we choose S = N and P = Fin, where
Fin n is a finite type with n elements, then J cW N Fin K(W,T ) ∼= (ListW, [w1, . . . , wn] 7→
T w1 × . . .× T wn). We will see a use of this upgraded code later in Example 21.

I Example 6. Similarly, the decoding of the code c2W : DS Set Set from Example 3
satisfies J c2W K0(U, T ) ∼= 1 +

(
Σs : U

)
(T (s) → U) with J c2W K1(U, T ) (inl ?) = 2 and

J c2W K1(U, T ) (inr (s, p)) = W (T s) (T ◦ p) which are the equations for a universe closed
under W-types.

Dybjer and Setzer [7] also give rules ensuring that J c K : Fam D → Fam D has an initial
algebra (UJ c K,TJ c K) for every c : DS D D. We omit them here.

2.2 Composition of DS codes
We are now approaching the actual topic of the paper. Given DS-codes c : DS C D and
d : DS D E, is there a code d • c : DS C E such that J d • c K(U, T ) ∼= J d K(J c K(U, T ))? We
immediately notice that it is easy to define postcomposition of any code by a ι or a σ code:
the functor J ι e K ignores its argument, hence so must J (ι e) • c K, and for σ codes, we can
just proceed structurally. The δ case, however, requires more thought. Again, looking first
at the action on index types of the families, we find for the right hand side of the above
equation

J δ A F K0(J c K0Z) =
(
Σg : A→ J c K0Z

)(
J F

(
J c K1(Z) ◦ g

)
K0(J c KZ)

)
=

((
A −→Fam J c KZ

)
>>=Fam

(
g 7→ J F

(
J c K1(Z) ◦ g

)
K0(J c KZ)

))
0

where _ >>=Fam _ : Fam D → (D → Fam E) → Fam E is the bind of the Fam monad
defined by Z >>=Fam h = µFam (Fam(h)Z), and

_ −→Fam _ :
(
S : Set

)
→ Fam D → Fam (S → D)

S −→Fam (A,P ) = (S → A, g 7→ P ◦ g)



N. Ghani, C. McBride, F Nordvall Forsberg and S Spahn 63:5

is a power in the category of elements
(
ΣD : Set1

)
(Fam D) of the functor Fam. This suggests

that to define (δ A F ) • c, we need to internalise >>=Fam and −→Fam in the system DS. The
first is readily achievable, because DS C is also a monad [11]:

I Proposition 7. There is an operation _ >>= _ : DS C D → (D → DS C E) → DS C E

such that J c >>= g KZ ∼= J c KZ >>=Fam (e 7→ J g e KZ) for every Z : Fam C, c : DS C D

and g : D → DS C E. J

Thus it remains to define powers of codes. Here, however, we hit a wall trying to define
S −→ c by induction on c: to apply the inductive hypothesis on f a in the following S-fold
power of a σ code

S → J σ A f K0 Z = S →
(
Σa : A

)
(J f a K0 Z) ∼=

(
Σg : S → A

)((
x : S

)
→ J f (g x) K0 Z

)
we would need to generalise our construction to dependent products

(
x : S

)
→ c(x) where

c : S → DS D E. But, if we do so, we can no longer do an induction on c, and we are stuck.
Even worse, any definition of composition necessarily involves powers:

I Theorem 8. There is a composition operator for DS if and only if there is a power operator
for DS. Here, by composition and power operators we mean terms

_ •_ : DS D E → DS C D → DS C E

_ −→ _ :
(
S : Set

)
→ DS D E → DS D (S → E)

respectively such that J c • d KZ ∼= J c K(J d KZ) and J S −→ c KZ ∼= (S −→Fam J c KZ).

Proof. Given _ −→ _, we can define _ •_ by

(ι e) • d = ι e

(σ A f) • d = σ A (a 7→ (f a) • d)
(δ A F ) • d = (A −→ d) >>= (g 7→ (F g) • d)

using Proposition 7. Conversely, A −→ c := (δ A (h 7→ ι h)) • c is a power operator. J

Two natural options suggest themselves as solutions: (i) restrict codes to ensure that no
dependency arises in the definition of powers; (ii) devise a system with dependent products
of codes. In the next two sections, we investigate new systems of codes for both of these
solutions.

3 Uniform Codes UF for Inductive-Recursive Definitions

This section presents our first new system for induction-recursion with a native composition
operation. The system UF of uniform codes is a subsystem of DS (Proposition 14). Informally,
a uniform code is a DS code where, for every constructor in a term, all immediate subterms
have the same root-constructor. Thus (the shape of) σ A (a 7→ δ B(a) (h 7→ ι φ(a, h))) is
uniform, whereas σ A f +DS δ B G = σ 2 (tt 7→ σ A f ; ff 7→ δ B G) is not since one subcode
is a σ code while the other is a δ one. Uniform codes originated with Peter Hancock [12].

3.1 Definition of UF and its Decoding
Formally, we define a type of codes Uni D : Set1 determining the code shapes, simultaneously
with a function Info : Uni D → Set1, which assigns to each code the information available for
indexing codes depending on it, in a uniform way.

MFCS 2017



63:6 Variations on Inductive-Recursive Definitions

I Definition 9. Let D,E : Set1. The large type UF D E : Set1 of uniform codes for
induction-recursion is defined by UF D E :=

(
Σc : Uni D

)
(Info c→ E), where Uni D : Set1

and Info : Uni D → Set1 are mutually defined by

ιUF : Uni D Info ιUF = 1
σUF :

(
c : Uni D

)
→ (Info c→ Set)→ Uni D Info (σUF c A) =

(
Σγ : Info c

)
(A γ)

δUF :
(
c : Uni D

)
→ (Info c→ Set)→ Uni D Info (δUF c A) =

(
Σγ : Info c

)
(A γ → D)

It is easy to see that UF D _ is functorial by function composition (alternatively, it is
defined as the action of a container [1], and hence automatically functorial). This two-level
presentation of codes (Uni, Info) has similarities with the (SP,Arg) presentation of Dybjer-
Setzer codes in the original paper [6], where however SP was merely inductively defined,
whereas here (Uni, Info) is itself an inductive-recursive definition. A further difference is that
the definition of Uni is left-nested while SP as well as DS are right-nested in the sense of
Pollack [15]. This can be seen as the source of uniformity in the definition.

I Example 10 (W-types, again). In order to get a feel for uniform codes, we return to
the W-types of Example 2. A uniform code in UF 1 1 representing the W-type W S P is
cW S P,UF = δUF

(
σUF ιUF (_ 7→ S)

)
((_, s) 7→ P (s)) : Uni 1, together with the terminal map

Info cW S P,UF → 1. If we compare this to the Dybjer-Setzer code from Example 2, we see
that the order of the (non-base-case) constructors is reversed:

(δUF
(
σUF ιUF (_ 7→ S)

)
((_, s) 7→ P (s)) , _ 7→ ?) : UF 1 1
σ S (s 7→ δ P (s) (_ 7→ ι ?)) : DS 1 1

Also this code can be “upgraded” to a more interesting UF Set Set code applying a given
T everywhere. We get the same decoding as in Example 5 if we replace the trivial map
(_ 7→ ?) : Info cW S P,UF → 1 by the map (s, Y, ?) 7→

(
x : P (s)

)
→ Y x.

I Example 11 (A universe closed under W-types, again). Example 3 uses coproducts of DS
codes. Coproducts of uniform codes a priori do not always exist as the different summands
may have different shapes. However, we will prove coproducts of uniform codes to exist in
Section 3.3. Assuming, for now, the coproduct _ +UF _ : UF D E → UF D E → UF D E, we
construct the code c2,UF +UF cW,UF : UF Set Set from the following summands — again note
that the nesting is the other way around compared to the DS code in Example 3:

c2,UF = (ιUF, ? 7→ 2) : UF Set Set
cW,UF =

(
δUF

(
δUF ιUF (? 7→ 1)

)
((?, S) 7→ S ?), ((?, S), P ) 7→W (S ?) P

)
: UF Set Set

Decoding of uniform codes UF D E is again given by functors Fam D → Fam E. The
definition is very similar to the decoding of DS codes except that UF codes have two
components. We use the same notation J − K for decoding a uniform code as for decoding a
DS code; this convention is reasonable since we will give a semantics-preserving translation
from UF to DS in Section 3.2.

I Definition 12. Let c : Uni D and α : Info c → E. The uniform code (c, α) : UF D E

induces a functor J c, α K : Fam D → Fam E by J c, α KZ = Fam(α) (J c KUni Z, J c KInfo Z)
where J _ KUni : Uni D → Fam D → Set and J _ KInfo :

(
c : Uni D

)
→

(
Z : Fam D

)
→

J c KUni Z → Info c are simultaneously defined by induction on c:



N. Ghani, C. McBride, F Nordvall Forsberg and S Spahn 63:7

J ιUF KUni (U, T ) = 1 J ιUF KInfo (U, T ) ? = ?

J σUF c A KUni (U, T ) = J σUF c A KInfo (U, T ) (x, a) =(
Σx : J c KUni (U, T )

)
(A(J c KInfo (U, T )x)) (J c KInfo (U, T ) x, a)

J δUF c A KUni (U, T ) = J δUF c A KInfo (U, T ) (x, g) =(
Σx : J c KUni (U, T )

)
(A(J c KInfo (U, T )x)→ U) (J c KInfo (U, T ) x, T ◦ g)

I Example 13. Decoding cW S P,UF from Example 10, we see that

J cW S P,UF KUni (U, T ) =
(
Σ(?, s) : 1× S

)
(P (s)→ U)

which is isomorphic to the domain of the W-type constructor sup, but this time nested the
other way compared to the decoding of cW S P in Example 5. By Theorem 18, we will have
J c+UF d K Z ∼= J c K Z + J d K Z, where the right hand side uses the coproduct of families.
Hence c2,UF +UF cW,UF from Example 11 decodes correctly.

3.2 Embedding of UF into DS
We embed UF into DS, i.e. we give a translation of codes which is semantics-preserving
in that the decoding of a code is isomorphic to the decoding of its translation. Since UF
codes are “backwards” compared to DS codes, this embedding resembles the well-known
accumulator based algorithm for reversing a list. Define accUFtoDS :

(
c : Uni D

)
→ (Info c→

DS D E)→ DS D E (the second argument is the accumulator) by

accUFtoDS ιUF F = F ?

accUFtoDS (σUF c A) F = accUFtoDS c (γ 7→ σ (A γ) (a 7→ F (γ, a)))
accUFtoDS (δUF c A) F = accUFtoDS c (γ 7→ δ (A γ) (h 7→ F (γ, h)))

and define UFtoDS : UF D E → DS D E by kicking things off with a ι:

UFtoDS (c, α) = accUFtoDS c (ι ◦ α) .

I Proposition 14. The translation UFtoDS is an embedding, i.e. for every c : UF D E and
Z : Fam D, we have J UFtoDS c K Z ∼= J c K Z. J

3.3 Coproducts of Uniform Codes
The coproduct c +DS d := σ 2 (tt 7→ c; ff 7→ d) of two DS codes is not in general the
embedding of a uniform code, even if c and d are, as c and d may still have different shapes.
Hence we cannot immediately use the same construction to define coproducts of uniform
codes, but we note that whenever c and d do have the same shape, this construction still
works. Our plan for constructing coproducts of uniform codes is then to find equivalent
replacements of the summands, such that the new pair has a common shape, and then using
the standard coproduct. To this end, we introduce an N-indexed variant UF+ D E n =(
Σc : Uni+ D n

)
(Info+ c→ E) of UF for this section only. There are two differences between

UF+ and UF: firstly, UF+ is indexed by the length n of its codes, and secondly in UF+ the
δUF and σUF codes are replaced by a combined code

δσ :
(
c : Uni+ D n

)
→

(
A : Info+ c→ Set

)
→((

γ : Info+ c
)
→ A γ → Set

)
→ Uni+ D (suc n)

MFCS 2017



63:8 Variations on Inductive-Recursive Definitions

with Info+ (δσ c A B) =
(
Σγ : Info+ c

)(
Σx : A γ

)
(B γ x → D). The code δσ should

be thought of as a δUF code followed by a σUF code. We can recover “ordinary” σUF
and δUF by σ+ c A := δσ c A (_,_ 7→ 0) and δ+ c B := δσ c (_ 7→ 1)(γ,_ 7→ B γ).
We have just informally described translations forget : UF+ D E n → UF D E and
canon+ :

(
c : UF D E

)
→ UF+ D E (length c), where length counts the depth of the code c.

A decoding J − K+ can be defined for UF+ along the lines for the one for UF (alternatively,
Proposition 15(ii) below can be used as a definition).

I Proposition 15. Let D,E : Set1 and Z : Fam D. If c : UF D E and d : UF+ D E n, then
(i) J canon+ c K+ Z ∼= J c KZ; and (ii) J forget d KZ ∼= J d K+ Z. J

This proposition can be summed up in the following commuting diagram:

UF D E

J − K ''

〈length,canon+〉
.. (

Σn : N
)
(UF+ D E n)

J − K+
uu

forget
mm

Fam D → Fam E

Next, note J δσ c 1 (_ 7→ 0) K+ Z ∼= J c K+ Z. Thus we can pad out c : UF+ D E n to
padk c : UF+ D E (n+ k + 1) without changing the meaning of the code:

I Lemma 16. Let k : N. There is an operation padk : UF+ D E n→ UF+ D E (n+ k + 1)
such that J padk c K+ Z ∼= J c K+ Z for every Z : Fam D. J

Since all UF+ codes of the same length also are of the same shape, it is now easy to form
coproducts of such codes. Define _ ++ _ : UF+ D E n→ UF+ D E n→ UF+ D E (sucn)
by (c, α) ++ (d, β) = (c+Uni d, [α, β] ◦ (c+Info d)) where _ +Uni _ is defined by

ι+ +Uni ι+ = σ+ ι+ (_ 7→ 2)
(δσ c A B) +Uni (δσ d A′ B′) = δσ (c+Uni d) ([A,A′] ◦ (c+Info d)) ([B,B′] ◦ (c+Info d))

simultaneously with a map (c+Info d) : Info+ (c+Uni d)→ Info+ c+ Info+ d, whose definition
is similar. Note that we did not need to consider the definition of e.g. ι+ +Uni (δσ c A B) as
these summands cannot possibly have the same length.

I Lemma 17. For all c, d : UF+ D E n and Z : Fam D we have J c ++ d K+ Z ∼=
J c K+ Z + J d K+ Z, where the right hand side is a coproduct of families. J

Putting everything together, we have:

I Theorem 18. Let D,E : Set1. Define _ +UF _ : UF D E → UF D E → UF D E by
c+UF d = forget (canon+ c++ canon+ d). Then J c+UF d K Z ∼= J c K Z + J d K Z. J

3.4 Composition of uniform Codes
Recall Section 2.2, where composition of DS codes followed from a power operation which
—because of the dependency arising in its attempted construction— we could not define.
Fortunately, in UF, a power operator is definable! Composition is here —as for DS— facilitated
by a conjunction of the power operation and a bind operator. A full bind operation for UF
is not definable since the grafting of uniform trees into a uniform tree may not be uniform
since the trees may differ in height (i.e. UF is not a monad). However, for composition, it
suffices to graft trees of the same height. Define − >>=[− −→ −] :

(
c : Uni D

)
→ (Info c→



N. Ghani, C. McBride, F Nordvall Forsberg and S Spahn 63:9

Set) → Uni D → Uni D, together with (c >>=[E −→ d])Info : Info (c >>=[E −→ d]) →(
Σx : Info c

)
(E x→ Info d), which explains the meaning of c >>=[E −→ d] at the level of Info.

We write >>=Info,0 and >>=Info,1 for the first and second projection of (c >>=[E −→ d])Info
respectively, inferring the other arguments from context:

c >>=[E −→ ιUF] = c

c >>=[E −→ σUF d A]
= σUF (c >>=[E −→ d])(γ 7→

(
e : E(>>=Info,0 γ)

)
→ A(>>=Info,1 γ e))

c >>=[E −→ δUF d A] =
= δUF (c >>=[E −→ d])(γ 7→

(
Σe : E(>>=Info,0 γ)

)
A(>>=Info,1 γ e))

(c >>=[E −→ ιUF])Info x = (x, (_ 7→ ?))
(c >>=[E −→ σUF d A])Info (x, g) = (>>=Info,0 x, e 7→ (>>=Info,0 x e, g e))
(c >>=[E −→ δUF d A])Info (x, g) = (>>=Info,0 x, e 7→ (>>=Info,0 x e, (a 7→ g (e, a)))

This definition is validated by the following proposition:

I Proposition 19. There is an equivalence

J c >>=[E −→ d], (d >>=[E −→ d])Info K ∼= (J c, id K) >>=Fam (e 7→ ((E e) −→Fam J d, id K)) J

I Remark. While is not possible to derive a bind operator from _ >>=[_ −→ _], we do
obtain a power operator with the right universal property by

A −→ (c, f) := (ιUF >>=[(_ 7→ A) −→ c], (γ 7→ f◦ >>=Info,1)) .

(This fact will not be needed in the proof of composition in Theorem 20.)
We can now define composition for UF codes in a fashion similar to Theorem 8, except that
we separate the action of the first component of a code and take care of the second component
in a second step:

I Theorem 20. The operations

_ •Uni _ : Uni D → UF C D → Uni C
(_ •Info _) :

(
c : Uni D

)
→

(
R : UF C D

)
→ Info (c •Uni R)→ Info c

simultaneously defined by

ιUF •Uni R = ιUF

(σUF c A) •Uni R = σUF (c •Uni R) (A ◦ (c •Info R))
(δUF c A) •Uni (d, β) = (c •Uni (d, β)) >>=[(A ◦ (c •Info (d, β))) −→ d]

(ιUF •Info R) x = x

((σUF c A) •Info R) (x, y) = ((c •Info R) x, y)
((δUF c A) •Info (d, β)) x = ((c •Info (d, β)) (>>=Info,0 x, β ◦ (>>=Info,1 x)))

make _ •_ : UF D E → UF C D → UF C E a composition operation for UF codes, where

(c, α) • (d, β) = (c •Uni (d, β), α ◦ (c •Info (d, β))) .

J

MFCS 2017



63:10 Variations on Inductive-Recursive Definitions

I Example 21. If we compose c2W from Example 11 with the “upgraded” code cW N Fin
from Example 10, we get a code for a universe where each constructor now takes a list of
inductive arguments, with decoding the product of the decodings. Up to an isomorphism
relating coproducts of compositions with compositions of coproducts, the resulting code is
c2W • cW N Fin ∼= c2,UF +UF c

′
W,UF, where c2,UF is as before, and

c′W,UF = (δUF (σUF cW N Fin ((?, n, Y ) 7→ (
(
x : Finn

)
→ Y x)→ N))

((?, n, Y, e) 7→
(
Σy :

(
x : Finn

)
→ Y x

)
Fin (e y)),

((?, n, Y, e,B) 7→
(
Σy :

(
x : Finn

)
→ Y x

)(
w : Fin (e y)

)
→ B (y, w))) .

4 Polynomial Codes PN for Inductive-Recursive Definitions

We saw in Section 2.2 that composition for Dybjer-Setzer codes requires a power operator.
However, simply adding a code for powers means that DS D _ is no longer a monad, and
the bind operation was crucial for constructing composition. Hence, further adjustments are
required. Following this line of thought results in a system including sums and type-indexed
products. For this reason, we call it polynomial inductive-recursive definitions, and denote it
by PN. It was originally invented by the second author in order to make induction-recursion
resemble the descriptions of datatypes in Chapman et al. [3]. Just like uniform codes,
polynomial codes are presented as a two-level definition which itself is an inductive-recursive
definition:

I Definition 22. Let D,E : Set1. The large type PN D E : Set1 of polynomial codes for
induction-recursion is defined by PN D E :=

(
Σc : Poly D

)
(Info c→ E), where Poly D : Set1

and Info : Poly D→ Set1 are mutually defined by

idPN : Poly D Info idPN = D

con : (A : Set)→ Poly D Info (con A) = A

sig : (S : Poly D)→ (Info S→ Poly D)→ Poly D Info (sig S F) =
(
Σx : Info S

)
(Info (F x))

pi : (A : Set)→ (A→ Poly D)→ Poly D Info (pi A F) =
(
x : A

)
→ Info (F x)

Warning: polynomial codes should not be confused with polynomial functors [9, 10]! We
use the same name Info as in uniform codes for the function computing the information
represented by a code. The code idPN represents the identity functor, con A the functor
constantly returning index type A, sig S F represents a dependent coproduct of functors,
and pi A F represents an A-indexed dependent product of functors. Observe that PND_ is
again, like UFD_, functorial by function composition.

I Example 23 (W-types, again). We revisit Examples 2 and 10. For S : Set, P : S → Set
the polynomial code for the W-type W S P is (cW S P,PN,_ 7→ ?) : PN 1 1 where cW S P,PN =
sig (con S)(s 7→ pi (P s) (_ 7→ idPN)). Again this can be upgraded to a PN Set Set
code, applying T : U → Set everywhere in the structure, by replacing the trivial map
(_ 7→ ?) : Info cW S P,PN → 1 by the map ((s, Y ) 7→

(
c : P (s)

)
→ Y x) : Info cW S P,PN → Set.

I Example 24 (A universe closed under W-types, again). We also revisit Example 3 again. A
polynomial code (c2W,PN, α) : PN Set Set for a universe containing 2, closed under W-types is
given by c2W,PN : Poly Set and α2W,PN : Info c2W,PN → Set where

c2W,PN = sig (con {two,w})(two 7→ con 1; w 7→ sig idPN (X 7→ pi X (_ 7→ idPN)))

and α2W,PN is defined by α2W,PN(two, x) = 2 and α2W,PN(w, (A,B)) = W S P .



N. Ghani, C. McBride, F Nordvall Forsberg and S Spahn 63:11

I Remark. One obtains a weaker system by replacing the pi code by a code pow : Set →
Poly D → Poly D with Info (pow A c) = A→ Info c. In the full system, such a code can be
defined by pow A c := pi A (_ 7→ c). The weaker system also enjoys composition, and the
embedding of Dybjer-Setzer codes in Section 4.1 factors through the system with powers
only. Semantically, the stronger system is just as easy to handle (see Theorem 27 below).
Polynomial codes in PN D E decode to functors Fam D → Fam E in the following way:

I Definition 25. Let c : Poly D and α : Info c→ E. The polynomial code (c, α) : PN D E

induces a functor J c, α K : Fam D → Fam E by J c, α KZ = Fam(α) (J c K0 Z, J c Kinfo Z) where
J c K0 : Fam D → Set and J c Kinfo : (X : Fam D) → J c K0 X → Info c are simultaneously
defined by induction on c:

J idPN K0 (U, T ) = U J idPN Kinfo (U, T )x = T x

J conA K0 X = A J conA Kinfo X a = a

J sigS F K0 (U, T ) =
(
Σs : J S K0 (U, T )

)
(J F (J S Kinfo (U, T ) s) K0 (U, T ))

J sigS F Kinfo (U, T ) (s, x) = (J S Kinfo (U, T ) s, J F (J S Kinfo (U, T ) s) Kinfo (U, T )x)
J piAF K0 X =

(
x : A

)
→ J Fx K0 X J piAF Kinfo X g = (a 7→ J (Fa) Kinfo X (g a))

I Example 26. Decoding cW S P,PN from Example 23, we get

J cW S P,PN K0 (U, T ) =
(
Σs : S

)
(P (s)→ U)

this time matching the domain of the W-type constructor sup strictly. Similarly decoding
(c2W,PN, α2W,PN) from Example 24 we again get the same result as in Example 6.

Since we did not exhibit PN as a subsystem of DS, we cannot rely on Dybjer and Setzer’s
proof of soundness, i.e. that initial algebras of the corresponding functors exist in their model.
We can, however, extend their proof to polynomial codes2:

I Theorem 27. Working in ZFC, assume the existence of a Mahlo cardinal M and a 1-
inaccessible cardinal I above it. Then there is a set-theoretic model of Martin-Löf Type
Theory + PN where types A : Set are interpreted as sets in VM and large types D : Set1 are
interpreted as sets in VI (here Vα is the cumulative hierarchy). In this model, all functors
J c K : Fam D → Fam D arising from polynomial codes c : PN D D have initial algebras. J

Note that the existence of large cardinals is only needed for the soundness proof, and not for
working within the theory itself. The same situation applies to Dybjer and Setzer’s DS.

4.1 Embedding of DS into PN
I Proposition 28. The map DStoPN : DS D E → PN D E given by DStoPN c = (toP c, toI c)
where toP : DS D E → Poly D and toI :

(
c : DS D E

)
→ Info (toP c)→ E are defined by

toP(ι e) = con 1 toI(ι e) ? = e

toP(σ Af) = sig (conA) (toP ◦ f) toI(σ Af) (a, x) = toI (f a)x
toP(δ AF ) = sig (piA (_ 7→ idPN)) (toP ◦ F ) toI(δ AF ) (g, x) = toI (F g)x

is semantics-preserving. J

We conjecture that this embedding is strict, i.e. that there is a code c : PN D E with
J c K 6' J DStoPN d K for every d : DS D E for some D,E : Set1.

2 We require a little bit more from the metatheory: Dybjer and Setzer [8] require I to be 0-inaccessible
only. But existence of I is a mild assumption compared to the existence of M.

MFCS 2017



63:12 Variations on Inductive-Recursive Definitions

4.2 Composition of Polynomial Codes
Composition for PN codes can be defined following the same pattern as in Proposition 8,
where we constructed composition for DS codes using the assumption of a power operation,
and the fact that DS is a monad. The system PN has a power operation using the pi
constructor, and is a monad thanks to the sig constructor:

I Proposition 29. For each D : Set1, PN D is a monad, i.e. there are terms ηPN : E →
PN D E and µPN : PN D (PN D E)→ PN D E satisfying the monad laws. Furthermore, let
(U, T ) : Fam D. Then J ηPN(e) K(U, T ) = ηFam(e) for every e : E and , and J µPN(c) K(U, T ) =
µFam(Fam(J − K(U, T ))(J c K(U, T ))) for every c : PN D (PN D E).

Proof. We define ηPN(e) = (con 1,_ 7→ e) and µPN(c, α) = (sig c (fst ◦ α), (x, y) 7→
snd (α x) y). The equations in terms of the monad structure on Fam holds on the nose. J

Using the monad structure, we can define a “dependent bind” operation

_ >>=PN _ : PN C D → (
(
x : D

)
→ PN C (E x))→ PN C (

(
Σx : D

)
(E x))

c >>=PN h = µPN(PN(x 7→ PN(y 7→ (x, y))) (hx) c)

We also note that the pi constructor can be packaged up into the following “dependent power”
operation for S : Set and E : A→ Set1:

πPNA :
(
a : A

)
→ PN D (E a)→ PN D (

(
a : A

)
→ (E a))

πPN A f = (pi A (fst ◦ f), (g 7→ (a 7→ snd (fa) (ga))))

Using these ingredients, we can now define composition of PN codes:

I Theorem 30. For c : Poly D and α : Info c → E and R : PN C D, define (c, α) • R =
PN(α) (c/R) : PN C E, where _/_ :

(
c : Poly E

)
→ PN D E → PN D(Info c) is defined by

idPN/R = R (sig c f)/R = (c/R) >>=PN (p 7→ (f p)/R)
(con A)/R = (conA, id) (pi A f)/R = πPN A (a 7→ (fa)/R)

Then J R •Q K (U, T ) ∼= J R K (J Q K (U, T )). J

I Example 31. Let us compose c2W,PN from Example 24 with the “upgraded” code cW N Fin,PN
from Example 23. This time we get the code sig (con {two,w}) f , where f two = con 1 and
f w = sig cW N Fin,PN ((n, Y ) 7→ pi (

(
x : Finn

)
→ (Y x)) (_ 7→ cW N Fin,PN)).

5 Conclusions

Inductive-recursive definitions arise as initial algebras of endofunctors on Fam D, but the
question of exactly which functors does not have a canonical answer. Dybjer and Setzer [7]
gave one axiomatisation DS, which was adequate in the sense that it covered all examples
“in the wild”, and all functors represented in it could be shown to have initial algebras (in a
sufficiently strong metatheory). We have presented two alternative axiomatisations UF and
PN that retain these properties, but in addition are closed under composition. This opens
up the field to find the optimal axiomatisation of inductive-recursive definitions. As a start,
we hope to show in future work that both inclusions UF ↪→ DS ↪→ PN are strict.

Acknowledgements. We would like to thank Peter Hancock and Anton Setzer for inspiration
and interesting discussions, and the reviewers for their suggestions and comments.



N. Ghani, C. McBride, F Nordvall Forsberg and S Spahn 63:13

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly

positive types. TCS, 342(1):3 – 27, 2005.
2 Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris. In-

dexed containers. Journal Functional Programming, 25, 2015.
3 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle

art of levitation. In ICFP 2010, pages 3–14, 2010.
4 Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994.
5 Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type

theory. Journal of Symbolic Logic, 65(2), 2000.
6 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions.

In TLCA, pages 129–146. Springer Verlag, 1999.
7 Peter Dybjer and Anton Setzer. Induction–recursion and initial algebras. Annals of Pure

and Applied Logic, 124(1-3):1–47, 2003.
8 Peter Dybjer and Anton Setzer. Indexed induction–recursion. Journal of logic and algebraic

programming, 66(1):1–49, 2006.
9 Nicola Gambino and Martin Hyland. Wellfounded trees and dependent polynomial functors.

In Types for Proofs and Programs, pages 210–225, 2004.
10 Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. Math-

ematical Proceedings of the Cambridge Philosophical Society, 154:153–192, 2013.
11 Neil Ghani and Peter Hancock. Containers, monads and induction recursion. Mathematical

Structures in Computer Science, 26(1):89–113, 2016.
12 Peter Hancock. Private communication.
13 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.

Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80
of Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland,
1975.

14 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

15 Robert Pollack. Dependently typed records in type theory. Formal Aspects of Computing,
13(3):386–402, 2002.

MFCS 2017


	Introduction
	Dybjer-Setzer Codes DS for Inductive-Recursive Definitions
	Definition of DS and its Decoding
	Composition of DS codes

	Uniform Codes UF for Inductive-Recursive Definitions
	Definition of UF and its Decoding
	Embedding of UF into DS
	Coproducts of Uniform Codes
	Composition of uniform Codes

	Polynomial Codes PN for Inductive-Recursive Definitions
	Embedding of DS into PN
	Composition of Polynomial Codes

	Conclusions

