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An inductive de�nition

data Rose (A : Set) : Set where

leaf : Rose A
node : A → List (Rose A) → Rose A

We can represent Rose A by a functor FRose : Set→ Set:

FRose(X ) = 1 + A× ListX

Rose A is the initial algebra of FRose.
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An inductive-recursive de�nition

A universe closed inder N and Σ.

data U : Set
T : U → Set

data U where

nat : U
sig : (a : U) → (b : T a → U) → U

T nat = N
T (sig a b) = Σ (T a) (T ◦ b)

U and T de�ned simultaneously.

Also (U,T) is the initial algebra of a functor.
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Category of families of Ds

The category Fam D for D : Set1:

• objects pairs (U,T ) where

U : Set

T : U → D

• morphisms (U,T )→ (U ′,T ′) are f : U → U ′ s.t.

U

T ��

f // U ′

T ′
~~

D

commutes.

Note: Fam : Cat→ Cat is a monad; D considered as discrete category.
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An endofunctor on Fam Set

data U : Set where

nat : U
sig : (a : U) → (b : T a → U) → U

T : U → Set
T nat = N
T (sig a b) = Σ (T a) (T ◦ b)

is represented by F : Fam Set→ Fam Set where

F (X ,Q) = (1,_ 7→ N) + (
(
Σa : X

)
(Q a→ X ), (a, b) 7→ Σ (Q a) (Q ◦ b))

(U,T) is the initial algebra of F .
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Representing inductive de�nitions
Not every functor de�nes a datatype. We want our inductive de�nitions to
be strictly positive.

We can codify such de�nitions as follows (baby Dybjer-Setzer [1999, 2003,
2006]):

data ID : Set1 where

stop : ID
side : (A : Set) → (c : A → ID) → ID
ind : (A : Set) → (c : ID) → ID

Each code gives rise to a functor:

J−K : ID → (Set→ Set)
JstopK X = 1
Jside A cK X =

(
Σx : A

)
(Jc xK X )

Jind A cK X = (A → X) × JcK X
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A code for ListA
stop : ID
side : (A : Set) →

(c : A → ID) → ID
ind : (A : Set) →

(c : ID) → ID

JstopK X = 1
Jside A cK X =

(
Σx : A

)
Jc xK X

Jind A cK X = (A → X) × JcK X

The datatype

data List (A : Set) : Set where

[] : List A

_::_ : A → List A → List A

is represented by

cList = side {'[], '::} ('[] 7→ stop; ':: 7→ side A (_ 7→ ind 1 stop))

Note: side {tagc , tagd} (tagc 7→ c ; tagd 7→ d) for encoding coproducts of
codes.
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Representing inductive-recursive de�nitions

Dybjer-Setzer codes for functors Fam D → Fam E :

data : Set1 where

stop :

side : (A : Set) → (c : A → ) →
ind : (A : Set) → (c : ) →

J_K : DS D E → Fam D → Fam E

Jι eK (U,T ) = (1, ? 7→ e)

Jσ A f K (U,T ) =
(
Σa : A

)
(Jf aK (U,T ))

Jδ A F K (U,T ) =
(
Σg : A→ U

)
(JF (T ◦ g)K (U,T ))

Note: Fam 1 ∼= Set and DS 1 1 ∼= ID.
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A code for a universe

The code

cΣN = σ {nat, sig} (nat 7→ ι N;

sig 7→ δ 1 (X 7→ (δ (X ?) (Y 7→ ι (Σ (X ?) Y )))))

represents F : Fam Set→ Fam Set where

F (U,T ) =

(1, ? 7→ N) + (
(
Σs : U

)
(Ts → U), (s, p) 7→ Σ (T s) (T ◦ p))
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Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given c : DS C D and d : DS D E , is there a code d • c : DS C E
representing JdK ◦ JcK : Fam C → Fam E?

Why care?

• Modularity: plug in c later.

• Solve F (G (X )) ∼= X , not just F (X ) ∼= X . E.g. cRose = cList • cList.

• Longer term goal: want syntax-independent characterisation of
induction-recursion (cf polynomial functors [Gambino and Kock]) �
will likely be closed under composition.
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A proof attempt

De�ne d • c by induction on d :

Since Jι eK (JcK (U,T )) = (1, ? 7→ e),

(ι e) • c = ι e

is easy.

Similarly (σ A f ) • c = σ A (a 7→ (f a) • d) by the induction hypothesis.

But what about δ? (So far, we can compose with constant functors. . . )
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Composing with δ

Jδ A F K0(JcK0Z ) =
(
Σg : A→ JcK0Z

)(
JF

(
JcK1(Z ) ◦ g

)
K0(JcKZ )

)

Progress could be made if we had

1 A −→ c

2 �Concatenation� of codes

Spoiler alert: these are also necessary conditions.
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�Concatenation� of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):

Proposition. There is an operation

_ >>= _ : DS C D → (D → DS C E ) → DS C E

such that Jc >>= gKZ ∼= JcKZ >>=Fam (e 7→ Jg eKZ ).

Concretely,

Jc >>= gK0 Z =
(
Σx : JcK0 Z

)
Jg (JcK1 Z x)K0 Z

Jc >>= gK1 Z (x , y) = Jg(JcK1 Z x)K1 Z y
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Trying to de�ne S −→ c

This time ι and δ are easy, but:

S → Jσ A f K0 Z = S →
(
Σa : A

)
(Jf aK0 Z )

∼=
(
Σg : S → A

)((
x : S

)
→ Jf (g x)K0 Z

)

To continue inductively, we need to generalise to a dependent product

π :
(
S : Set

)
→ (S → DS D E )→ DS D E

But we cannot de�ne this because we have nothing to induct on anymore.
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Powers from composition

In fact, any de�nition of composition would give us powers:

Theorem. A composition operator

_ •_ : DS D E → DS C D → DS C E

is de�nable if and only if a power operator

_ −→ _ :
(
S : Set

)
→ DS D E → DS D (S → E )

is de�nable.

This (apparent) lack of powers thus suggests that DS, as an axiomatisation
of a class of functors, could perhaps be improved upon.

15



Powers from composition

In fact, any de�nition of composition would give us powers:

Theorem. A composition operator

_ •_ : DS D E → DS C D → DS C E

is de�nable if and only if a power operator

_ −→ _ :
(
S : Set

)
→ DS D E → DS D (S → E )

is de�nable.

This (apparent) lack of powers thus suggests that DS, as an axiomatisation
of a class of functors, could perhaps be improved upon.

15



Variations on inductive-recursive de�nitions

This leads us to investigate alternative classes of functors axiomatising
inductive-recursive de�nitions.

If one wants closure under composition, two natural options suggest
themselves:

1 Restrict dependency so that S −→ c is de�nable  uniform codes
(Peter Hancock).

2 Add a π combinator to the system  polynomial codes (Conor
McBride).

Take-home message: There are many axiomatisations of
induction-recursion.
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Uniform codes



Uniform codes

Originally due to Peter Hancock (2012).

Discovered while trying to de�ne composition for DS.
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Uniformity by associating like in the 60s

In
σ : (A : Set)→ (c : A→ DSDE )→ DSDE

nonuniformity comes from c depending on A.

Idea: Instead make A depend on (the information in) c .

Consequence: the code c for �the rest of the constructor� is always of the
same �shape�.

Left-nested instead of right-nested (Pollack: Dependently Typed Records in
Type Theory [2002]).
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Uniform codes UF

Let D,E : Set1. Uni D : Set1 and Info : Uni D → Set1 are
inductive-recursively given by

ιUF : Uni D

σUF :
(
c : Uni D

)
→ (A : Info c → Set)→ Uni D

δUF :
(
c : Uni D

)
→ (A : Info c → Set)→ Uni D

Info ιUF = 1

Info (σUF c A) =
(
Σγ : Info c

)
(A γ)

Info (δUF c A) =
(
Σγ : Info c

)
(A γ → D)

Large set of uniform codes UF D E =
(
Σc : Uni D

)
(Info c → E ).
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Decoding uniform codes

J _ KUni : Uni D → Fam D → Set

J _ KInfo :
(
c : Uni D

)
→

(
Z : Fam D

)
→ J c KUni Z → Info c

J ιUF KUni (U,T ) = 1

J σUF c A KUni (U,T ) =
(
Σx : J c KUni (U,T )

)
(A(J c KInfo (U,T ) x))

J δUF c A KUni (U,T ) =
(
Σx : J c KUni (U,T )

)
(A(J c KInfo (U,T ) x)→ U)

...

J δUF c S KInfo (U,T ) (x , g) = (J c KInfo (U,T ) x ,T ◦ g)

Finally for (c , α) : UF D E =
(
Σc : Uni D

)
(Info c → E )

J (c, α) K = (J c KUni −, α ◦ J c KInfo −) : Fam D → Fam E
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A code for W-types

data W (S : Set)(P : S → Set) : Set where

sup: (s : S) → (P s → W S P) → W S P

cW S P,UF = δUF
(
σUF ιUF (_ 7→ S)

)
((_, s) 7→ (P s)) : Uni 1

cW S P,DS = σ S (s 7→ δ (P s) (_ 7→ ι ?)) : DS 1 1

J cW S P,UF KUni (U,T ) =
(
Σ(?, s) : 1× S

)
(P(s)→ U)

JcW S P,DSK0 (U,T ) =
(
Σs : S

)(
Σf : (P(s)→ U)

)
1
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Coproducts of uniform codes

A priori we do not longer have coproducts of codes � DS coproducts relied
exactly on non-uniformity of σ.

Crucial for encoding several constructors into one.

Proposition. For every uniform code c , J c KZ ∼= J σUF c (_ 7→ 1) KZ and

J c KZ ∼= J δUF c (_ 7→ 0) KZ .

By �padding� codes with such semantically redundant information, we can
de�ne c +UF d .

E.g.

σUF (δUF ιUF A)B +UF δUF ιUF A
′ = σUF (δUF (σUF ιUF 2) [A,A′]) [B, 0]

Theorem. J c +UF d K Z ∼= J c K Z + J d K Z .
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UF ↪→ DS

Since uniform codes are �backwards�, we can translate UF to DS the same
way one reverses a list using an accumulator:

accUFtoDS :
(
c : Uni D

)
→ (Info c → DS D E )→ DS D E

de�ned by

accUFtoDS ιUF F = F ?

accUFtoDS (σUF c A) F = accUFtoDS c (γ 7→ σ (A γ) (a 7→ F (γ, a)))

accUFtoDS (δUF c A) F = accUFtoDS c (γ 7→ δ (A γ) (h 7→ F (γ, h)))

Proposition. JaccUFtoDS c (ι ◦ α)K Z ∼= J (c , α) K Z .

Going the other way seems unlikely.
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Consequences for soundness

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of
existence of initial algebras.

However the construction of (Uni, Info) itself is one instance of large
induction-recursion, albeit a particularly simple instance. No additional
assumptions are needed in the set-theoretical model.
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UF is not a monad

We have gained uniformity, which makes powers de�nable.

Unfortunately, the uniformity also means that we no longer have a monad.

Bind should graft trees, but grafting a collection of uniform trees might not
result in a uniform tree.
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Towards composition: combined bind and powers

Is all lost? No. We can still de�ne the instance of bind that we need,
combined with a power operation. (Note: only the set depends on Info c .)

− >>=[− −→ −] :
(
c : Uni D

)
→ (Info c → Set)→ Uni D → UniD

As usual, we need to de�ne this simultaneously with its meaning on Info:

(c >>=[E −→ d ])Info : Info (c >>=[E −→ d ])→
(
Σx : Info c

)
(E x → Info d)

Proposition. There is an equivalence

J c >>=[E −→ d ], (d >>=[E −→ d ])Info K
∼= (J c , id K) >>=Fam (e 7→ ((E e) −→Fam J d , id K))
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Composition for UF

_ •Uni _ : Uni D → UF C D → Uni C

(_ •Info _) :
(
c : Uni D

)
→

(
R : UF C D

)
→ Info (c •Uni R)→ Info c

ιUF •Uni R = ιUF

(σUF c A) •Uni R = σUF (c •Uni R) (A ◦ (c •Info R))

(δUF c A) •Uni (d , β) = (c •Uni (d , β)) >>=[(A ◦ (c •Info (d , β))) −→ d ]

Theorem.

J (c , α) • d KZ = J c •Uni d , α ◦ (c •Info d) KZ ∼= J (c , α) K(J d KZ ).
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How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to
DS.

However all inductive-recursive de�nitions �in the wild� are already uniform
(because coproducts de�nable).

Conjecture: UF and DS have the same proof-theoretical strength.
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Summary

Uniform codes UF and polynomial codes PN as new, alternative
axiomatisations of inductive-recursive de�nitions.

UF ↪→ DS ↪→ PN

Both UF and PN are closed under composition; DS probably is not.

Existence of initial algebras for UF unproblematic. For PN, need to adjust
the DS model slightly (but not much).

Are there other, even more well-behaved axiomatisations?

Thank you!
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