Variations on inductive-recursive definitions

Fredrik Nordvall Forsberg

University of Strathclyde, Glasgow

Agda Implementors’ Meeting, Gothenburg, 12 May 2017

Joint work with Neil Ghani, Conor McBride, Peter Hancock and Stephan Spahn

An inductive definition

data Rose (A : Set) : Set where
leaf : Rose A
node : A — List (Rose A) — Rose A

We can represent Rose A by a functor Frese : Set — Set:

Frose(X) = 1+ A x List X

An inductive definition

data Rose (A : Set) : Set where
leaf : Rose A
node : A — List (Rose A) — Rose A

We can represent Rose A by a functor Frese : Set — Set:

Frose(X) = 1+ A x List X

Rose A is the initial algebra of Fgrese.

An inductive-recursive definition

A universe closed inder N and X.

data U : Set
T : U — Set

data U where

nat : U
sig :(@a:U) - (b:Ta—U — U
T nat = N

T (sigab) =X (Ta) (T ob)

An inductive-recursive definition

A universe closed inder N and X.

data U : Set
T : U — Set

data U where

nat : U
sig :(@a:U) - (b:Ta—U — U
T nat = N

T (sigab) =X (Ta) (T ob)

U and T defined simultaneously.

An inductive-recursive definition

A universe closed inder N and X.

data U : Set
T : U — Set

data U where

nat : U
sig :(@a:U) - (b:Ta—U — U
T nat = N

T (sigab) =X (Ta) (T ob)

U and T defined simultaneously.

Also (U, T) is the initial algebra of a functor.

Category of families of Ds
The category Fam D for D : Sety:
e objects pairs (U, T) where

U : Set
T:U—=D

e morphisms (U, T) = (U, T")are f : U — U’ s.t.

f

N

D

V) U

commutes.

Note: Fam : Cat — Cat is a monad; D considered as discrete category.

An endofunctor on Fam Set

data U : Set where

nat : U

sig :(a@:U) - ®:Ta—U — U
T : U — Set

T nat = N

T (sigab) =X (T a (T ob)
is represented by F : Fam Set — Fam Set where

F(X,Q)=(1,_—N)+((Za: X)(Qa— X),(a,b) = X (Qa) (Qo b))

An endofunctor on Fam Set

data U : Set where

nat : U

sig :(a@:U) - ®:Ta—U — U
T : U — Set

T nat = N

T (sigab) =X (T a (T ob)
is represented by F : Fam Set — Fam Set where

F(X,Q)=(1,_—N)+((Za: X)(Qa— X),(a,b) = X (Qa) (Qo b))

(U, T) is the initial algebra of F.

Representing inductive definitions

Not every functor defines a datatype. We want our inductive definitions to
be strictly positive.

Representing inductive definitions

Not every functor defines a datatype. We want our inductive definitions to
be strictly positive.

We can codify such definitions as follows (baby Dybjer-Setzer [1999, 2003,
2006)):

data ID : Set; where
stop : ID
side : (A : Set) - (¢c : A= 1ID) - 1ID
ind : (A : Set) —» (¢ : ID) — ID

Representing inductive definitions

Not every functor defines a datatype. We want our inductive definitions to

be strictly positive.

We can codify such definitions as follows (baby Dybjer-Setzer [1999, 2003,

2006]):

data ID : Set; where
stop : ID
side : (A : Set) — (c
ind : (A : Set) — (c

Each code gives rise to a functor:

[-] : ID — (Set— Set)
[stop] X =1

: A —-1D) — ID
: ID) — ID

[side A c] X = (Xx:A)([c x] X)
[ind Ac] X=(QA — X) x [c] X

A code for List A

stop : ID
side : (A : Set) — [stop] X =1

(c: A= 1ID) —» ID [side A c] X = (Ex:A)[c x] X
ind : (A : Set) — [ind Ac] X=(MA =X x [c] X

(c : ID) — ID

A code for List A

stop : ID
side : (A : Set) — [stop] X =1

(c: A= 1ID) —» ID [side A c] X = (Ex:A)[c x] X
ind : (A : Set) — [ind Ac] X=(MA =X x [c] X

(c : ID) — ID
The datatype

data List (A : Set) : Set where
[| - List A
A — List A — List A

is represented by

aist = side {'[], =} ('[] = stop; ":: > side A (_ + ind 1 stop))

A code for List A

stop : ID
side : (A : Set) — [stop] X =1

(c: A= 1ID) —» ID [side A c] X = (Ex:A)[c x] X
ind : (A : Set) — [ind Ac] X=(MA =X x [c] X

(c : ID) — ID
The datatype

data List (A : Set) : Set where
[| - List A
A — List A — List A

is represented by
aist = side {'[], =} ('[] = stop; ":: > side A (_ + ind 1 stop))

Note: side {tag.,tagy} (tage — ¢; tagy +— d) for encoding coproducts of
codes.

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data ID : Set; where
stop : ID
side : (A : Set) - (¢ : A= 1ID) - ID
ind : (A : Set) - (c : ID) —» ID

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

stop : DS DE

side : (A : Set) - (¢c: A—-DSDE) - DSDE
ind : (A:Set) > (c: DSDE) - DSDE

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—- DSDE

side : (A : Set) - (¢c: A—-DSDE) - DSDE
ind : (A:Set) > (c: DSDE) - DSDE

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—- DSDE

c: (A :Set) - (c: A—-DSDE) — DSDE
ind : (A:Set) > (c: DSDE) - DSDE

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—- DSDE

c: (A :Set) - (c: A—-DSDE) — DSDE

6 : (A :Set) > (c: (A—-D) - DSDE) - DSDE

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—- DSDE

c: (A :Set) - (c: A—-DSDE) — DSDE

6 : (A :Set) > (c: (A—-D) - DSDE) - DSDE

[]:DSDE— Fam D — Fam E

[ee] (U, T)=(1,%—e)
[c Af] (U, T)= (Za:A)([fa] (U,T))
[6AF] (U, T)=(Xg: A= U)([F(Tog)] (U,T))

Representing inductive-recursive definitions
Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—-DSDE

o : (A :Set) > (c: A—-DSDE) - DSDE

6 : (A :Set) > (¢c: (A —-D) -—DSDE) - DSDE

coproducts in Fam D
Fam E

[]:DSDE—Fa

[ee] (U T)=(1,%
[oc Af] (U, T):(Za: U, T))
[VAF](UT)=(xg: U)([F(Tog)l (U, T))

Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—- DSDE

c: (A :Set) - (c: A—-DSDE) — DSDE

6 : (A :Set) > (c: (A—-D) - DSDE) - DSDE

[]:DSDE— Fam D — Fam E

[ee] (U, T)=(1,%—e)
[c Af] (U, T)= (Za:A)([fa] (U,T))
[6AF] (U, T)=(Xg: A= U)([F(Tog)] (U,T))

Note: Fam 1 = Set and DS 11 = ID.

A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sigr—=> 01 (X = (6 (X*) (Y= (Z(X%)Y))))

represents F : Fam Set — Fam Set where

F(U,T)=
(Lx = N)+ ((Zs: U)(Ts = U),(s,p) = Z (Ts) (T op))

A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sigr—> 01 (X = (0 (X*)(Y—=1(Z(X%)Y)))))

represents F : Fam Set — Fam Set where

F(U,T)=
(Lx = N)+ ((Zs: U)(Ts = U),(s,p) = Z (Ts) (T op))

A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sig—=> 01 (X = (0 (X*)(Y—=1(XZ(X*)Y)))))
represents F : Fam Set — Fam Set where
F(U,T)=
(L, x— N)+ ((Zs 11— U)(T(s*) = U),(s,p) = Z (T (s%)) (T op))

A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sig—= 01 (X = (0 (X*)(Y—=1(Z(X*)Y)))))
represents F : Fam Set — Fam Set where
F(U, T)=
(Lx=> N)+ ((Zs: 1= U)(T(sx) = U),(s,p) = Z (T (s*)) (T o p))

A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sig—= 01 (X = (0 (X*)(Y—=1(Z(X*)Y)))))
represents F : Fam Set — Fam Set where
F(U,T)=
(Lx=> N)+ ((Zs: 1= U)(T(sx) — U),(s,p) = Z (T (s*)) (T o p))

A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sig—= 01 (X = (0 (X*) (Y= (XZ(X*)Y)))))
represents F : Fam Set — Fam Set where
F(U, T)=
(Lx=> N)+ ((Zs: 1= U)(T(sx) = U),(s,p) = Z (T (s*)) (T o p))

Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?

10

Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?

Why care?

10

Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?

Why care?

e Modularity: plug in c later.

10

Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?

Why care?

e Modularity: plug in c later.

e Solve F(G(X)) = X, not just F(X) = X. E.g. CRose = CList ® CList-

10

Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?

Why care?
o Modularity: plug in c later.
e Solve F(G(X)) = X, not just F(X) = X. E.g. CRrose = CList ® CList-
e Longer term goal: want syntax-independent characterisation of

induction-recursion (cf polynomial functors [Gambino and Kock]) —
will likely be closed under composition.

10

A proof attempt

Define d e ¢ by induction on d:

11

A proof attempt

Define d e ¢ by induction on d:
Since v €] ([e] (U, T)) = (1, % —e),
(te)ec=1e

is easy.

11

A proof attempt

Define d e ¢ by induction on d:

Since v e] ([e] (U, T)) = (1,x— e),

is easy.

Similarly (c Af)ec=0

(te)ec=1e

A (a+ (f a) e d) by the induction hypothesis.

11

A proof attempt

Define d e ¢ by induction on d:
Since v e] ([e] (U, T)) = (1,x— e),
(Le)ec=1e
is easy.
Similarly (c Af)ec =0 A(a+> (f a)ed) by the induction hypothesis.

But what about 67 (So far, we can compose with constant functors. ..)

11

Composing with ¢

[0 A Flo(lclo2) = (Zg : A= [clo2) ([F (Ic]1(2) © 8)Io([c] 2))

12

Composing with ¢

[0 A Flo(lclo2) = (Zg : A= [clo2) ([F (Ic]1(2) © 8)Io([c] 2))

Progress could be made if we had
A—c

“Concatenation” of codes

12

Composing with ¢

[0 A Flo(lclo2) = (Zg : A= [clo2) ([F (Ic]1(2) © 8)Io([c] 2))

Progress could be made if we had
A—c
“Concatenation” of codes

Spoiler alert: these are also necessary conditions.

12

“Concatenation” of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):
Proposition. There is an operation
_>= :DSCD - (D -DSCE) -DSCE

such that [c >=g]| Z = [c] Z >=Fm (e — [g €] 2).

13

“Concatenation” of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):
Proposition. There is an operation
_>= :DSCD - (D -DSCE) -DSCE

such that [c >=g]| Z = [c] Z >=Fm (e — [g €] 2).
Concretely,

[c>=g],Z= (Zx el Z) lg ([c]y Z2x)]g Z
[c>=gl; Z(x,y) = [g([c]s Zx)], Zy

13

Trying to define S — ¢

This time ¢ and § are easy, but:

So[0AflyZ=5— (Za: A\([f al, 2)
> (Xg:S—=A)((x:S) = [f (g X)) 2)

14

Trying to define S — ¢

This time ¢ and § are easy, but:

S—[oAflyZ=S5— (Za: A([f al, 2)
> (Xg:S—=A)((x:S) = [f (g X)) 2)

To continue inductively, we need to generalise to a dependent product

m:(5:Set) > (S—>DSDE)—DSDE

14

Trying to define S — ¢

This time ¢ and § are easy, but:

S—[oAflyZ=S5— (Za: A([f al, 2)
> (Xg:S—=A)((x:S) = [f (g X)) 2)

To continue inductively, we need to generalise to a dependent product

m:(5:Set) > (S—>DSDE)—DSDE

But we cannot define this because we have nothing to induct on anymore.

14

Powers from composition

In fact, any definition of composition would give us powers:
Theorem. A composition operator

e :DSDE—-DSCD—-DSCE
is definable if and only if a power operator

—+:(5:Set) »DSDE - DSD (S — E)
is definable.

15

Powers from composition

In fact, any definition of composition would give us powers:
Theorem. A composition operator

e :DSDE—DSCD-DSCE

is definable if and only if a power operator

—+:(5:Set) »DSDE - DSD (S — E)

is definable.]

This (apparent) lack of powers thus suggests that DS, as an axiomatisation
of a class of functors, could perhaps be improved upon.

15

Variations on inductive-recursive definitions

This leads us to investigate alternative classes of functors axiomatising
inductive-recursive definitions.

If one wants closure under composition, two natural options suggest
themselves:

Restrict dependency so that S — ¢ is definable ~» uniform codes
(Peter Hancock).

Add a 7 combinator to the system ~~ polynomial codes (Conor
McBride).

16

Variations on inductive-recursive definitions

This leads us to investigate alternative classes of functors axiomatising
inductive-recursive definitions.

If one wants closure under composition, two natural options suggest
themselves:

Restrict dependency so that S — ¢ is definable ~» uniform codes
(Peter Hancock).

Add a 7 combinator to the system ~~ polynomial codes (Conor
McBride).

Take-home message: There are many axiomatisations of
induction-recursion.

16

Uniform codes

Uniform codes
Originally due to Peter Hancock (2012).

Discovered while trying to define composition for DS.

17

Uniformity by associating like in the 60s

In

o:(A:Set) - (c: A— DSDE) — DSDE

nonuniformity comes from ¢ depending on A.

18

Uniformity by associating like in the 60s

In
o:(A:Set) - (c: A— DSDE) — DSDE

nonuniformity comes from ¢ depending on A.

Idea: Instead make A depend on (the information in) c.

18

Uniformity by associating like in the 60s

In

o:(A:Set) - (c: A— DSDE) — DSDE

nonuniformity comes from ¢ depending on A.
Idea: Instead make A depend on (the information in) c.

Consequence: the code ¢ for “the rest of the constructor” is always of the
same “shape”.

18

Uniformity by associating like in the 60s

In

o:(A:Set) - (c: A— DSDE) — DSDE

nonuniformity comes from ¢ depending on A.
Idea: Instead make A depend on (the information in) c.

Consequence: the code ¢ for “the rest of the constructor” is always of the
same “shape”.

Left-nested instead of right-nested (Pollack: Dependently Typed Records in
Type Theory [2002]).

18

Uniform codes UF

Let D, E : Sety. Uni D : Set; and Info : Uni D — Sety are
inductive-recursively given by
LUF - Uni D
our : (¢ Uni D) — (A: Info ¢ — Set) — Uni D
6ur : (c:Uni D) — (A Info ¢ — Set) — Uni D

Info LUF = 1
Info (cur ¢ A) = (Ev : Info ¢)(A)
Info (dur ¢ A) = (v : Info ¢)(A~y — D)

Large set of uniform codes UF D E = (Xc : Uni D)(Info ¢ — E).

19

Decoding uniform codes

[Juni:Uni D — Fam D — Set
[[_]]|mc0:(c:UniD)—>(Z:FamD)—>[[c]]UniZ_>|nfoc

20

Decoding uniform codes

[Juni:Uni D — Fam D — Set
[[_]]|mc0:(c:UniD)—>(Z:FamD)—>[[c]]UniZ_>|nfoc

[cur Juni (U ,T):l
[our ¢ Aluni (U, (x: [cJuni (U,))(A([[¢ Jinfo (U, T) x))
[[dur € A]]Unl) (ZX [[C]]Unl) T))(A([[¢]]Info (Ua T) X) - U)

[[(SUF ¢ SJ]Info (U7 T) (x,g) = ([[Cﬂlnfo (Ua T) X, Tog)

20

Decoding uniform codes

[Juni:Uni D — Fam D — Set
[[_]]|mc0:(C:UniD)—>(Z:FamD)—>[[c]]UniZ_>|nfoc

[cur Juni (U ,T):l
[our ¢ Aluni (U, (x: [cJuni (U,))(A([[¢ Jinfo (U, T) x))
[[dur € A]]Unl) (ZX [[C]]Unl) T))(A([[¢]]Info (Ua T) X) - U)

[[6UF ¢ SJ]Info (U7 T) (x,g) = ([[Cﬂlnfo (Ua T) X, Tog)

Finally for (c,a) : UF D E = (Xc : Uni D)(Info ¢ — E)
[(c,a)]=([cJuni —ao]c]info—):Fam D — Fam E

20

A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S PUF = 6UF (UUF LUF (_ — S)) ((_,S) — (PS)) :Unil

[[C\/VSP,UF]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)

21

A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S P,UF = 5UF (UUF LUF (_ — S)) ((_,S) — (PS)) :Unil
awspps =0S(s—d(Ps)(_—tx):DS11

[[C\/VSP,UF]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)

21

A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S P,UF = 5UF (UUF LUF (_ — 5)) ((_,S) — (PS)) :Unil
awspps =0S(s—d(Ps)(_—tx):DS11

[[C\/VSP,UF]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)

21

A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S PUF = 6UF (UUF LUF (_ — S)) ((_,S) — (PS)) :Unil
awspps =0S(s—d(Ps)(_—tx):DS11

[[C\/VSP,UF]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)

21

A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S P,UF = 5UF (UUF LUF (_ — 5)) ((_,S) — (PS)) :Unil
awspps =0S(s—d(Ps)(_—tx):DS11

[[Cw S P,UF]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)
[ews ppslo (U, T) = (Xs: S)(Xf : (P(s) — U))1

21

Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.

22

Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.

Crucial for encoding several constructors into one.

22

Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, [c|Z = [ouyrc(_+— 1)]Z and
[clZ=[durc(_—0)]Z. O

By “padding” codes with such semantically redundant information, we can
define ¢ +yF d.

22

Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, [c|Z = [ouyrc(_+— 1)]Z and
[clZ=[durc(_—0)]Z. O

By “padding” codes with such semantically redundant information, we can
define ¢ +yF d.

E.g.

our (6ur tur A) B +ur dur tur A" = our (Our (our tur 2) [A, A']) [B, 0]

22

Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, [c|Z = [ouyrc(_+— 1)]Z and
[clZ=[durc(_—0)]Z. O

By “padding” codes with such semantically redundant information, we can
define ¢ +yF d.

E.g.

our (6ur tur A) B +ur dur tur A" = our (Our (our tur 2) [A, A']) [B, 0]

Theorem. [c+yrd] Z=[c]Z+]d] Z O

22

UF < DS

Since uniform codes are “backwards”’, we can translate UF to DS the same
way one reverses a list using an accumulator:

accUFtoDS : (¢ : Uni D) — (Infoc -+ DS D E) - DS D E

23

UF < DS

Since uniform codes are “backwards”’, we can translate UF to DS the same
way one reverses a list using an accumulator:

accUFtoDS : (¢ : Uni D) — (Infoc -+ DS D E) - DS D E
defined by

accUFtoDS wyg F = F %
accUFtoDS (oyr ¢ A) F = accUFtoDS ¢ (y— o (Av) (a— F (7, a)))
accUFtoDS (0uyr ¢ A) F = accUFtoDS ¢ (v +— 6 (A7) (h+— F (v, h)))

23

UF < DS

Since uniform codes are “backwards”’, we can translate UF to DS the same
way one reverses a list using an accumulator:

accUFtoDS : (¢ : Uni D) — (Infoc -+ DS D E) - DS D E
defined by

accUFtoDS wyg F = F %
accUFtoDS (oyr ¢ A) F = accUFtoDS ¢ (y— o (Av) (a— F (7, a)))
accUFtoDS (0uyr ¢ A) F = accUFtoDS ¢ (v +— 6 (A7) (h+— F (v, h)))

Proposition. JaccUFtoDS c (1o)] Z= [(c,a)] Z. O

Going the other way seems unlikely.

23

Consequences for soundness

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of
existence of initial algebras.

24

Consequences for soundness

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of
existence of initial algebras.

However the construction of (Uni, Info) itself is one instance of large
induction-recursion, albeit a particularly simple instance. No additional
assumptions are needed in the set-theoretical model.

24

UF is not a monad

We have gained uniformity, which makes powers definable.

Unfortunately, the uniformity also means that we no longer have a monad.

25

UF is not a monad

We have gained uniformity, which makes powers definable.
Unfortunately, the uniformity also means that we no longer have a monad.

Bind should graft trees, but grafting a collection of uniform trees might not
result in a uniform tree.

25

Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need,
combined with a power operation. (Note: only the set depends on Infoc.)

—>=[— — —]: (c: Uni D) — (Info ¢ — Set) — Uni D — UniD

26

Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need,
combined with a power operation. (Note: only the set depends on Infoc.)

—>=[— — —]: (c: Uni D) — (Info ¢ — Set) — Uni D — UniD

As usual, we need to define this simultaneously with its meaning on Info:

(¢ >=E — d])info : Info (¢ >=E — d]) = (Ix : Info ¢)(E x — Info d)

26

Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need,
combined with a power operation. (Note: only the set depends on Infoc.)

—>=[— — —]: (c: Uni D) — (Info ¢ — Set) — Uni D — UniD

As usual, we need to define this simultaneously with its meaning on Info:

(¢ >=E — d])info : Info (¢ >=E — d]) = (Ix : Info ¢)(E x — Info d)

Proposition. There is an equivalence

[c>>HE — d].(d >=E — d])inp |
> ([c,id]) >=rom (e > (E €) —spam [d,id])) [

26

Composition for UF

eypi UniD—-UFCD—UniC
(_ omfo) (C:Uni D) — (R:UF C D) — Info (c ey, R) — Info ¢

27

Composition for UF

eypi UniD—-UFCD—UniC
(_ omfo) (C:Uni D) — (R:UF C D) — Info (c ey, R) — Info ¢

LUF euni R = tuF
(our c A) eyni R = our (c euni R) (Ao (c oo R))
(dur ¢ A) euni (d, B) = (c euni (d, B)) >={(Ac (c ons (d, B))) — d]

27

Composition for UF

eypi UniD—-UFCD—UniC
(_ omfo) (C:Uni D) — (R:UF C D) — Info (c ey, R) — Info ¢

LUF euni R = tuF
(our c A) eyni R = our (c euni R) (Ao (c oo R))
(dur ¢ A) euni (d, B) = (c euni (d, B)) >={(Ac (c ons (d, B))) — d]

Theorem.
[(c,a)ed]Z=[ceysd,ao(coppd)]Z=](c,a) | ([d]Z). O

27

How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to
DS.

However all inductive-recursive definitions “in the wild” are already uniform
(because coproducts definable).

28

How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to
DS.

However all inductive-recursive definitions “in the wild” are already uniform
(because coproducts definable).

Conjecture: UF and DS have the same proof-theoretical strength.

28

Summary

Uniform codes UF and polynomial codes PN as new, alternative
axiomatisations of inductive-recursive definitions.

UF — DS — PN

Both UF and PN are closed under composition; DS probably is not.

Existence of initial algebras for UF unproblematic. For PN, need to adjust
the DS model slightly (but not much).

Are there other, even more well-behaved axiomatisations?

Thank youl

29

	Introduction
	Representing inductive-recursive definitions
	Uniform codes
	Summary

