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An inductive definition

data Rose (A : Set) : Set where
leaf : Rose A
node : A — List (Rose A) — Rose A

We can represent Rose A by a functor Frese : Set — Set:

Frose(X) = 1+ A x List X
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An inductive-recursive definition

A universe closed inder N and X.

data U : Set
T : U — Set

data U where

nat : U
sig :(@a:U) - (b:Ta—U — U
T nat = N

T (sigab) =X (Ta) (T ob)

U and T defined simultaneously.

Also (U, T) is the initial algebra of a functor.



Category of families of Ds
The category Fam D for D : Sety:
e objects pairs (U, T) where

U : Set
T:U—=D

e morphisms (U, T) = (U, T")are f : U — U’ s.t.

f

N

D

V) U

commutes.

Note: Fam : Cat — Cat is a monad; D considered as discrete category.



An endofunctor on Fam Set

data U : Set where

nat : U

sig :(a@:U) - ®:Ta—U — U
T : U — Set

T nat = N

T (sigab) =X (T a (T ob)
is represented by F : Fam Set — Fam Set where

F(X,Q)=(1,_—N)+((Za: X)(Qa— X),(a,b) = X (Qa) (Qo b))
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(U, T) is the initial algebra of F.
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Not every functor defines a datatype. We want our inductive definitions to

be strictly positive.

We can codify such definitions as follows (baby Dybjer-Setzer [1999, 2003,

2006]):

data ID : Set; where
stop : ID
side : (A : Set) — (c
ind : (A : Set) — (c

Each code gives rise to a functor:

[-] : ID — (Set— Set)
[stop] X =1

: A —-1D) — ID
: ID) — ID

[side A c] X = (Xx:A)([c x] X)
[ind Ac] X=(QA — X) x [c] X



A code for List A

stop : ID
side : (A : Set) — [stop] X =1

(c: A= 1ID) —» ID [side A c] X = (Ex:A)[c x] X
ind : (A : Set) — [ind Ac] X=(MA =X x [c] X

(c : ID) — ID



A code for List A

stop : ID
side : (A : Set) — [stop] X =1

(c: A= 1ID) —» ID [side A c] X = (Ex:A)[c x] X
ind : (A : Set) — [ind Ac] X=(MA =X x [c] X

(c : ID) — ID
The datatype

data List (A : Set) : Set where
[| - List A
A — List A — List A

is represented by

aist = side {'[], =} ('[] = stop; ":: > side A (_ + ind 1 stop))



A code for List A

stop : ID
side : (A : Set) — [stop] X =1

(c: A= 1ID) —» ID [side A c] X = (Ex:A)[c x] X
ind : (A : Set) — [ind Ac] X=(MA =X x [c] X

(c : ID) — ID
The datatype

data List (A : Set) : Set where
[| - List A
A — List A — List A

is represented by
aist = side {'[], =} ('[] = stop; ":: > side A (_ + ind 1 stop))

Note: side {tag.,tagy} (tage — ¢; tagy +— d) for encoding coproducts of
codes.
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Representing inductive-recursive definitions
Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—-DSDE

o : (A :Set) > (c: A—-DSDE) - DSDE

6 : (A :Set) > (¢c: (A —-D) -—DSDE) - DSDE

coproducts in Fam D
Fam E

[ ]:DSDE—Fa

[ee] (U T)=(1,%
[oc Af] (U, T):(Za: U, T))
[VAF](UT)=(xg: U)([F(Tog)l (U, T))



Representing inductive-recursive definitions

Dybjer-Setzer codes for functors Fam D — Fam E:

data DS (D E : Set;) : Set; where

t : E—- DSDE

c: (A :Set) - (c: A—-DSDE) — DSDE

6 : (A :Set) > (c: (A—-D) - DSDE) - DSDE

[ ]:DSDE— Fam D — Fam E

[ee] (U, T)=(1,%—e)
[c Af] (U, T)= (Za:A)([fa] (U,T))
[6AF] (U, T)=(Xg: A= U)([F(Tog)] (U,T))

Note: Fam 1 = Set and DS 11 = ID.



A code for a universe

The code

crn = o {nat,sig} (nat — ¢ N;
sigr—=> 01 (X = (6 (X*) (Y= (Z(X%)Y))))

represents F : Fam Set — Fam Set where

F(U,T)=
(Lx = N)+ ((Zs: U)(Ts = U),(s,p) = Z (Ts) (T op))
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Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?
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Closure under composition?

DS codes represent functors; are they closed under composition?

That is, given ¢: DS C D and d : DS D E, is there a code dec: DS C E
representing [d] o [¢] : Fam C — Fam E?

Why care?
o Modularity: plug in c later.
e Solve F(G(X)) = X, not just F(X) = X. E.g. CRrose = CList ® CList-
e Longer term goal: want syntax-independent characterisation of

induction-recursion (cf polynomial functors [Gambino and Kock]) —
will likely be closed under composition.

10
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Define d e ¢ by induction on d:
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A proof attempt

Define d e ¢ by induction on d:
Since v e] ([e] (U, T)) = (1,x— e),
(Le)ec=1e
is easy.
Similarly (c Af)ec =0 A(a+> (f a)ed) by the induction hypothesis.

But what about 67 (So far, we can compose with constant functors. .. )

11



Composing with ¢

[0 A Flo(lclo2) = (Zg : A= [clo2) ([F (Ic]1(2) © 8)Io([c] 2))
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Composing with ¢

[0 A Flo(lclo2) = (Zg : A= [clo2) ([F (Ic]1(2) © 8)Io([c] 2))

Progress could be made if we had
A—c
“Concatenation” of codes

Spoiler alert: these are also necessary conditions.
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“Concatenation” of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):
Proposition. There is an operation
_>= :DSCD - (D -DSCE) -DSCE

such that [c >=g]| Z = [c] Z >=Fm (e — [g €] 2).
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“Concatenation” of codes

Item 2 is easy, because DS D is a monad (Ghani and Hancock [2016]):
Proposition. There is an operation
_>= :DSCD - (D -DSCE) -DSCE

such that [c >=g]| Z = [c] Z >=Fm (e — [g €] 2).
Concretely,

[c>=g],Z= (Zx el Z) lg ([c]y Z2x)]g Z
[c>=gl; Z(x,y) = [g([c]s Zx)], Zy

13



Trying to define S — ¢

This time ¢ and § are easy, but:

So[0AflyZ=5— (Za: A\([f al, 2)
> (Xg:S—=A)((x:S) = [f (g X)) 2)
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Trying to define S — ¢

This time ¢ and § are easy, but:

S—[oAflyZ=S5— (Za: A([f al, 2)
> (Xg:S—=A)((x:S) = [f (g X)) 2)

To continue inductively, we need to generalise to a dependent product

m:(5:Set) > (S—>DSDE)—DSDE

But we cannot define this because we have nothing to induct on anymore.

14



Powers from composition

In fact, any definition of composition would give us powers:
Theorem. A composition operator

e :DSDE—-DSCD—-DSCE
is definable if and only if a power operator

_—+_:(5:Set) »DSDE - DSD (S — E)
is definable.
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Powers from composition

In fact, any definition of composition would give us powers:
Theorem. A composition operator

e :DSDE—DSCD-DSCE

is definable if and only if a power operator

_—+_:(5:Set) »DSDE - DSD (S — E)

is definable. ]

This (apparent) lack of powers thus suggests that DS, as an axiomatisation
of a class of functors, could perhaps be improved upon.
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Variations on inductive-recursive definitions

This leads us to investigate alternative classes of functors axiomatising
inductive-recursive definitions.

If one wants closure under composition, two natural options suggest
themselves:

Restrict dependency so that S — ¢ is definable ~» uniform codes
(Peter Hancock).

Add a 7 combinator to the system ~~ polynomial codes (Conor
McBride).
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Variations on inductive-recursive definitions

This leads us to investigate alternative classes of functors axiomatising
inductive-recursive definitions.

If one wants closure under composition, two natural options suggest
themselves:

Restrict dependency so that S — ¢ is definable ~» uniform codes
(Peter Hancock).

Add a 7 combinator to the system ~~ polynomial codes (Conor
McBride).

Take-home message: There are many axiomatisations of
induction-recursion.

16



Uniform codes



Uniform codes
Originally due to Peter Hancock (2012).

Discovered while trying to define composition for DS.
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Uniformity by associating like in the 60s

In

o:(A:Set) - (c: A— DSDE) — DSDE

nonuniformity comes from ¢ depending on A.
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Uniformity by associating like in the 60s

In

o:(A:Set) - (c: A— DSDE) — DSDE

nonuniformity comes from ¢ depending on A.
Idea: Instead make A depend on (the information in) c.

Consequence: the code ¢ for “the rest of the constructor” is always of the
same “shape”.

Left-nested instead of right-nested (Pollack: Dependently Typed Records in
Type Theory [2002]).
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Uniform codes UF

Let D, E : Sety. Uni D : Set; and Info : Uni D — Sety are
inductive-recursively given by
LUF - Uni D
our : (¢ Uni D) — (A: Info ¢ — Set) — Uni D
6ur : (c:Uni D) — (A Info ¢ — Set) — Uni D

Info LUF = 1
Info (cur ¢ A) = (Ev : Info ¢)(A )
Info (dur ¢ A) = (v : Info ¢)(A~y — D)

Large set of uniform codes UF D E = (Xc : Uni D)(Info ¢ — E).

19



Decoding uniform codes

[ Juni:Uni D — Fam D — Set
[[_]]|mc0:(c:UniD)—>(Z:FamD)—>[[c]]UniZ_>|nfoc
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Decoding uniform codes

[ Juni:Uni D — Fam D — Set
[[_]]|mc0:(C:UniD)—>(Z:FamD)—>[[c]]UniZ_>|nfoc

[ cur Juni (U ,T):l
[ our ¢ Aluni (U, ( x: [ cJuni (U, ))(A([[ ¢ Jinfo (U, T) x))
[[ dur € A ]]Unl ) (ZX [[C ]]Unl ) T))(A([[ ¢ ]]Info (Ua T) X) - U)

[[6UF ¢ SJ]Info (U7 T) (x,g) = ([[ Cﬂlnfo (Ua T) X, Tog)

Finally for (c,a) : UF D E = (Xc : Uni D)(Info ¢ — E)
[(c,a)]=([cJuni —ao]c]info—):Fam D — Fam E

20



A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S PUF = 6UF (UUF LUF (_ — S)) ((_,S) — (PS)) :Unil

[[C\/VSP,UF ]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)
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A code for W-types

data W (S : Set)(P : S — Set) : Set where
sup: (s : 8) > (Ps - WSP) »>WSP

CW S P,UF = 5UF (UUF LUF (_ — 5)) ((_,S) — (PS)) :Unil
awspps =0S(s—d(Ps)(_—tx):DS11

[[ Cw S P,UF ]]Uni (U, T) = (Z(*, S) 1 x S)(P(S) — U)
[ews ppslo (U, T) = (Xs: S)(Xf : (P(s) — U))1

21



Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.
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Coproducts of uniform codes

A priori we do not longer have coproducts of codes — DS coproducts relied
exactly on non-uniformity of o.

Crucial for encoding several constructors into one.

Proposition. For every uniform code c, [c|Z = [ouyrc(_+— 1)]Z and
[clZ=[durc(_—0)]Z. O

By “padding” codes with such semantically redundant information, we can
define ¢ +yF d.

E.g.

our (6ur tur A) B +ur dur tur A" = our (Our (our tur 2) [A, A']) [B, 0]

Theorem. [c+yrd ] Z=[c]Z+]d] Z O

22



UF < DS

Since uniform codes are “backwards”’, we can translate UF to DS the same
way one reverses a list using an accumulator:

accUFtoDS : (¢ : Uni D) — (Infoc -+ DS D E) - DS D E
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UF < DS

Since uniform codes are “backwards”’, we can translate UF to DS the same
way one reverses a list using an accumulator:

accUFtoDS : (¢ : Uni D) — (Infoc -+ DS D E) - DS D E
defined by

accUFtoDS wyg F = F %
accUFtoDS (oyr ¢ A) F = accUFtoDS ¢ (y— o (Av) (a— F (7, a)))
accUFtoDS (0uyr ¢ A) F = accUFtoDS ¢ (v +— 6 (A7) (h+— F (v, h)))

Proposition. JaccUFtoDS c (1o )] Z= [ (c,a) ] Z. O

Going the other way seems unlikely.
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Consequences for soundness

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of
existence of initial algebras.
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Consequences for soundness

This means that UF can piggyback on Dybjer and Setzer [1999]'s proof of
existence of initial algebras.

However the construction of (Uni, Info) itself is one instance of large
induction-recursion, albeit a particularly simple instance. No additional
assumptions are needed in the set-theoretical model.
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UF is not a monad

We have gained uniformity, which makes powers definable.

Unfortunately, the uniformity also means that we no longer have a monad.
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UF is not a monad

We have gained uniformity, which makes powers definable.
Unfortunately, the uniformity also means that we no longer have a monad.

Bind should graft trees, but grafting a collection of uniform trees might not
result in a uniform tree.
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Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need,
combined with a power operation. (Note: only the set depends on Infoc.)

—>=[— — —]: (c: Uni D) — (Info ¢ — Set) — Uni D — UniD
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Towards composition: combined bind and powers

Is all lost? No. We can still define the instance of bind that we need,
combined with a power operation. (Note: only the set depends on Infoc.)

—>=[— — —]: (c: Uni D) — (Info ¢ — Set) — Uni D — UniD

As usual, we need to define this simultaneously with its meaning on Info:

(¢ >=E — d])info : Info (¢ >=E — d]) = (Ix : Info ¢)(E x — Info d)

Proposition. There is an equivalence

[c>>HE — d].(d >=E — d])inp |
> ([ c,id]) >=rom (e > (E €) —spam [ d,id])) [
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Composition for UF

_eypi_ UniD—-UFCD—UniC
(_ omfo ) (C:Uni D) — (R:UF C D) — Info (c ey, R) — Info ¢
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Composition for UF

_eypi_ UniD—-UFCD—UniC
(_ omfo ) (C:Uni D) — (R:UF C D) — Info (c ey, R) — Info ¢

LUF euni R = tuF
(our c A) eyni R = our (c euni R) (Ao (c oo R))
(dur ¢ A) euni (d, B) = (c euni (d, B)) >={(Ac (c ons (d, B))) — d]

27



Composition for UF

_eypi_ UniD—-UFCD—UniC
(_ omfo ) (C:Uni D) — (R:UF C D) — Info (c ey, R) — Info ¢

LUF euni R = tuF
(our c A) eyni R = our (c euni R) (Ao (c oo R))
(dur ¢ A) euni (d, B) = (c euni (d, B)) >={(Ac (c ons (d, B))) — d]

Theorem.
[(c,a)ed]Z=[ceysd,ao(coppd)]Z=](c,a) | ([d]Z). O

27



How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to
DS.

However all inductive-recursive definitions “in the wild” are already uniform
(because coproducts definable).

28



How suitable are uniform codes?

Uniform codes (most likely) capture a smaller class of functors compared to
DS.

However all inductive-recursive definitions “in the wild” are already uniform
(because coproducts definable).

Conjecture: UF and DS have the same proof-theoretical strength.
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Summary

Uniform codes UF and polynomial codes PN as new, alternative
axiomatisations of inductive-recursive definitions.

UF — DS — PN

Both UF and PN are closed under composition; DS probably is not.

Existence of initial algebras for UF unproblematic. For PN, need to adjust
the DS model slightly (but not much).

Are there other, even more well-behaved axiomatisations?

Thank youl
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