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Parametric polymorphism [Strachey, 1967]

@ A polymorphic program
t:Va. A

is parametric if it applies the same uniform algorithm at all
instantiations t[B] of its type parameter.

o Typical example:

reverse : Va.List o — List o



Reynolds insight: relational parametricity [1983]

@ Turn the negative statement “not distinguishing types” into the
positive statement “preserves all relations”.



Reynolds insight: relational parametricity [1983]

@ Turn the negative statement “not distinguishing types” into the
positive statement “preserves all relations”.

@ A polymorphic program t : Va. A is relationally parametric if for all
relations R C B x B/,

(t[B], t[B']) € (A)(R)

where (A)(R) C A(B) x A(B’) is the relational interpretation of the
type A.

o E.g. reverse : Va.List a — List « is relationally parametric.



Applications of relational parametricity

Relational parametricity enables:

o Reasoning about abstract data types.

o Correctness (universal properties) of encodings of data types.

o ‘Theorems for free!’” [Wadler, 1989].

o Concretely, a specific example: if t : Va. @« — « then t = Aa. Ax. x.

Usually in the setting of Girard's/Reynold’s A2 (System F) — serves as a
model type theory for (impredicative) polymorphism.
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So why not just combine the two?

@ When doing so, the expected consequences of parametricity are only
derivable if the underlying category is well-pointed.

@ Recall: A category C is well-pointed when f = g: A—— B in C iff
foe=goe:1—— B forall global elements e : 1 —— A.

@ This rules out many interesting categories, e.g. functor categories.
o Existing solutions (e.g. Birkedal and Mggelberg [2005]) circumvent
this by adding significant additional structure to models (enough to

model the full logic of Plotkin and Abadi).

o We seek instead a mininimal solution still based on the idea of directly
combining models of A2 with structure for relational parametricity.
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A minimal solution

@ We achieve this in a perhaps unexpected way: we change the notion
of model of A\2.

o )\2 fibrations satisfying Lawvere’'s comprehension property.

o This allows us to combine such comprehensive A2 fibrations with
reflexive graph structure to model relational parametricity for A\2.

o Validating expected consequences, also for non-well-pointed
categories.

@ Proof involves novel ingredients due to minimality of structure:
» definability of direct image relations,
» arguments without use of equality relations, and
» only weak forms of graph relations available ('pseudographs’).



Outline

Q The type theory \2
@ Modelling A2 using (comprehensive) A2 fibrations

© Modelling relational parametricity using (comprehensive) parametricity
graphs

@ Reasoning about parametricity using a type theory A2R
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The polymorphic lambda calculus A2 (System F) [Girard,

1972; Reynolds, 1974]

o Four judgements:

[N ctxt

I A type
Fr-t:A
Nl-t=s:A

[" is a context

A'is a type in context

term t has type A in context [
judgemental equality

o Types and terms generated by grammars

AB:i=a|A—B|Va. A types
t,s i=x| Ax.t |t s| Aa.t | t[B] terms

o Equality generated by () and () for both term and type abstraction.

10



Only unusual feature of our presentation

o We use a single context with type and term variables interleaved.

e Standard from a dependent types perspective.

o Hence two different context extensions:

[ ctxt (agl) [N ctxt [+ A type
I, a ctxt I, x: Actxt

(x¢&T)

11
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A2 fibrations [Seely, 1987; see also Jacobs, 1999]

Definition (A2 fibration)

A A2 fibration is a fibration p : T — C, where the base category C has
finite products, and the fibration:

Q is fibred cartesian closed;
@ has a generic object U — we write Q for p U;
© and has fibred-products along projections X x Q —— X in C.

12



A2 fibrations [Seely, 1987; see also Jacobs, 1999]

Definition (A2 fibration)

A )2 fibration is a split fibration p : T — C, where the base category C has
finite products, and the fibration:

@ is fibred cartesian closed;
@ has a split generic object U — we write Q2 for p U;

© and has fibred-products along projections X x Q —— X in C.

Moreover, the reindexing functors given by the splitting should preserve the
above-specified structure in fibres on the nose.

12



Structure in detail (i)

e Fibration p: T — C, C has finite products.
» C category of type variable contexts and substitutions.

» Products are context concatenation.
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Structure in detail (i)

@ Fibration p: T — C, C has finite products.
» C category of type variable contexts and substitutions.
» Products are context concatenation.
» Fibre T} category of types in context I
» Reindexing is substitution.

13



Structure in detail (ii)

@ ...is fibred cartesian closed;
» Each fibre is closed under exponentials.
> Needed for —.
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Structure in detail (ii)

@ ...is fibred cartesian closed;
» Each fibre is closed under exponentials.
> Needed for —.

@ ...has a split generic object U — we write Q for p U;
» Every object A in T arises as A = ¢*(U) for some o : p(A) — Q.
» “Every type arises uniquely by substitution from a generic type”.
» The generic type U is a type variable « in context Q = «.
» Needed for type variables.

@ ...and has fibred-products along projections ' x @ —— I in C.
» Each reindexing functor 7§ : Tr — Trxq has a right adjoint
HQ Trwg — Tr.
» Needed for V.

14
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the type and term variable components of T.

, Xm : Am be
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Old-fashioned interpretation

o Given context I, let © = a, ..

apand A=x;: A1,..., Xm : An be

the type and term variable components of T.

o Type variable context © = oy, ..

., ap interpreted as [©] = Q" in C.
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o Given context I', let © = ar1,...,apand A =xy : A1, ..., Xm : An be
the type and term variable components of T.

o Type variable context © = ag, ..., a, interpreted as [©] = Q" in C.

o Type A in context © is interpreted as an object in T[g).
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Old-fashioned interpretation

o Given context I', let © = ar1,...,apand A =xy : A1, ..., Xm : An be
the type and term variable components of T.

o Type variable context © = ag, ..., a, interpreted as [©] = Q" in C.
o Type A in context © is interpreted as an object in T[g).

@ Term variable context A = x1 : A1,...,Xm : A interpreted as
[[A]] = [[Al]] X ... X [[Am]] in T[[@]].

15
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fashioned interpretation

Given context I', let © = a1,...,apand A =xy 1 A1, ..., Xm : An be
the type and term variable components of T.

Type variable context © = ag, ..., a, interpreted as [©] = Q" in C.
Type A in context © is interpreted as an object in T[g).

Term variable context A = x1 : A1,...,Xmn : Ay interpreted as
[[A]] = [[Al]] X ... X [[Am]] in T[[@]].

Term I' -t : Ais interpreted as morphism

[[tﬂ@;A : [[A]] — [[A]] in T[[@]]
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Old-fashioned interpretation

o Given context I, let © = a, ..

apand A=x;: A1,..., Xm : An be

the type and term variable components of T.

o Type variable context © = oy, ..

., ap interpreted as [©] = Q" in C.

o Type A in context © is interpreted as an object in T[g).

@ Term variable context A = x7 :

A1, ..., Xm : Ap interpreted as

[[A]] = [[Al]] X ... X [[Amﬂ in T[[@]].

o Term [+ t: A s interpreted as morphism

[[tﬂ@;A : [[A]] — [[A]] in T[[@]]

@ The combined context made things awkward; let's fix that by
modifying the notion of model and giving a new interpretation.

15



Our modification: one new ingredient

We take inspirations from models of dependent types, where separated
contexts are not possible.

Definition (Comprehensive A2 fibration)

A A2 fibration p : T — C is comprehensive if it enjoys the comprehension
property: the fibred-terminal-object functor X — 1x : C — T has a
specified right adjoint K : T — C.

o Given A € Tr, think of K(A) as the extended context I', x : A.

o For A€ Tr, write kg = p(ea) : K(A) —— T for the ‘projection’ map
obtained by applying p to the counit 4 : 1x(4) — Ain T.

16



Interpretation in a comprehensive A2 fibration

o Contexts [ interpreted as object [I] in C.

o Type ' - A type interpreted as object [A]r in Tyr.

17



Interpretation in a comprehensive A2 fibration

o Contexts [ interpreted as object [I] in C.
o Type ' - A type interpreted as object [A]r in Tyr.

o Mutually defined, simultaneously with maps 7f: [I'] —— Q for every
context [ containing a.

[I=1 [a]r = (=f)" U
ﬂl’, aﬂ = [[I']] x Q [[A — B]]r = [[A]]r :>[[F]] [[B]]r
[T, x: A] = K[A]r [Va. A] = HQ [AIF. o

fa=m  afg=nfom (B#a) TP ,a=n oy

17



Interpretation in a comprehensive A2 fibration

o Contexts [ interpreted as object [I] in C.
o Type ' - A type interpreted as object [A]r in Tyr.

o Mutually defined, simultaneously with maps 7f: [I'] —— Q for every
context [ containing a.

[1=1 [elr = (=7)" U
ﬂl’, aﬂ = [[I']] x Q [[A — B]]r = [[A]]r :>[[F]] [[B]]r
[F, x : A] = K[A]r [ve. A] = [ [, [Alr.a
T = 72 g =7t om (B# ) T, x:A = T © KA]x

@ Term ' =t : Ais interpreted as global element

[tlr: 1grp — [Alr in Tyry

17



For future reference

Compare the interpretation of terms in standard and comprehensive A2
fibrations:

o [tle;a : [A] — [A] in Tjep (old-fashioned, standard)
o versus global element

[thr: 1y — [Alr in Tyry

(comprehensive)

18



Soundness and completeness

Theorem (Soundness for A\2)

IfT F ty =ty : A then, in every comprehensive A2 fibration, we have

[t:]r = [t]r-

Theorem (Full completeness for A2)
There exists a comprehensive \2 fibration satisfying:

O for every type I' = A type, every global point 1jrj — [A]r is the
denotation [t]r of some term '+t : A; and

Q for all terms T F t1, t : A satisfying [t1]r = [t2]r, we have
FEt =t: A

10






Incorporating relational parametricity

@ These models do not model parametricity.

@ In order to do so, we combine with the structure of reflexive graph
categories [Ma and Reynolds,1992; Robinson and Rosolini, 1994;
O’Hearn and Tennent, 1995; ...].

@ Simple category-theoretic structure for modelling relations.

20



Reflexive graph categories

o Categories V and E, where we think if E as category of relations over
objects of V.

@ The functors V1, V3 are ‘projection’ functors giving source and target
of relations, respectively, and A maps an object to its ‘identity
relation’.

21



Reflexive graph categories

o Categories V and E, where we think if E as category of relations over
objects of V.

@ The functors V1, V3 are ‘projection’ functors giving source and target

of relations, respectively, and A maps an object to its ‘identity
relation’.

@ Notation: R: A< Bmeans Re E and ViR=A, V,R = B.

@ Similarly, write f x g: R —— S if there is h: R —— S in E with
Vih = f and Voh = g. (Will soon assume h is unique, if it exists.)

21



Parametricity graphs [Dunphy, 2002; Dunphy and Reddy,
2004]

Vi
Ee AV
V>

@ We need to add further conditions to ensure that the objects of E
behave sufficiently like relations.
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Parametricity graphs [Dunphy, 2002; Dunphy and Reddy,
2004]

Vi
Ewe A—V
V>

@ We need to add further conditions to ensure that the objects of E
behave sufficiently like relations.

o Relational if (V1,V2): E — V x V is faithful. Intuitively, relations are
proof-irrelevant.

o ldentity property if for every h: AA—— AB in E, it holds that
V1ih = Vyh. Allows one to think of AA as an identity relation on A.

o Parametricity graph: relational, with the identity property, and
(V1,V2): E — V x V a fibration. Ensures that there are enough
relations by supplying inverse image relations.

29



Combining reflexive graphs and comprehensive A2 fibrations
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Combining reflexive graphs and comprehensive A2 fibrations

Main definition (Comprehensive A2 parametricity graph)

A comprehensive A2 parametricity graph is a reflexive graph of
comprehensive A2 fibrations

vT, AT VT
R(T) T
pr p
R(C) > C
vE, AC, vE

which is “fibrewise” a parametricity graph.

b X}



Combining reflexive graphs and comprehensive A2 fibrations

Main definition (Comprehensive A2 parametricity graph)

A comprehensive A2 parametricity graph is a reflexive graph of
comprehensive A2 fibrations

Vi, AT, V3
R(T) T
p* p
R(C) - C
vE, AT VE

which is “fibrewise” a parametricity graph.

Note: Recover “broken” definition by dropping comprehensive.

b X}
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Reasoning in models: a type theory A2R
@ We construct a type theory A2R which is the ‘internal language’ of
comprehensive A2 parametricity graphs.

@ By proving soundness and completeness, we can work in A2R instead
of directly in the model.

@ A2R is similar in many respects to System R [Abadi, Cardelli and
Curien, 1993] and System P [Dunphy, 2002].

24



Reasoning in models: a type theory A2R

@ We construct a type theory A2R which is the ‘internal language’ of
comprehensive A2 parametricity graphs.

@ By proving soundness and completeness, we can work in A2R instead
of directly in the model.

@ A2R is similar in many respects to System R [Abadi, Cardelli and
Curien, 1993] and System P [Dunphy, 2002].

@ Not a conservative extension of A2 — parametric models enjoy much
stronger properties than arbitrary models (for which A2 is internal

language).

24



New judgement forms

A2R extends A2 with three new judgements:

© rctxt © is a relational context
O F A1 RA5 rel R is a relation between types A; and A;
OF (t1:A1)R(t2:Az) t; 1Ay is related to tr: Ay by the relation R

25



Relation formation rules

O F app rel

(Oép,B c @) @ H A1 RA2 rel @ F 51552 rel

She (A1 — Bl)(R — S)(A2 — Bg) rel

O, apBt A1RA; rel
© F (Vo A1) (YapB. R)(VS. A) rel

26



Relation formation rules

@ H A1 RA2 rel @ F 51552 rel

(app € ©)

She Oépﬁ rel She (A1 — Bl)(R — 5)(A2 — Bg) rel

O, apBt A1RA; rel
O F (Va. A1) (VYapB. R)(VS. Ay) rel

© F B1RBy rel (@)1 Fti: A — B (@)2 Fth:A— B
Cl= A1([t1 X tg]_lR)Az rel

(Will get back to projections (—); soon.)

26



Direct image relations

Direct image relations

Or A1 RA2 rel

(@)1"1‘1:/\1—)81 (@)2"1‘2:;42—)32

OF Bl([tl X t2]gR)B2 rel

27



Direct image relations
Direct image relations

O F A1RA5 rel (@)1 Ft:A — B (@)2 Fth:A =B
Ok Bl([tl X t2]!R)BQ rel

are definable by the impredicative encoding

[t1 x ]iR = [ig, X ig,] " (VapB.([(= o t1) x (=0 )] (R = p)) = p)

where ig abbreviates Ab. Aa. At.tb: B — Va.(B—a)—a.

27



Direct image relations

Direct image relations

Or A1 RA2 rel

(@)1"1‘1:/\1—)81 (@)2"1‘2:;42—)82

OF Bl([tl X t2]gR)B2 rel

are definable by an impredicative encoding.

27



Direct image relations

Direct image relations

O F A1 RA5 rel (@)1 Ft:A — B (@)2 Fth:A — B

OF Bl([tl X t2]gR)B2 rel
are definable by an impredicative encoding.

Semantically, this means:

Theorem

In any comprehensive A2 parametricity graph, the functors
(V1,V2) Ir(myw : RAT)w = Tgew X Tygy

are also opfibrations (hence bifibrations).

27



Operations on syntax

o Left and right projections (-)1, (-)2 from relational contexts to typing
contexts.

()i
(0, aupx2)i = (9);, a;
(©, (x1:A1)R(x2: A2))i = (©);, xi: Ai

28



Operations on syntax

o Left and right projections (+)1, (+)2 from relational contexts to typing
contexts.

()i =
(0, aupx2)i = (9);, a;
(©, (x1:A1)R(x2:A2))i = (©)i, xi: A

o Conversely, a “doubling” operation takes typing contexts to relational
contexts.

o Mutually defined with a “relational interpretation” (A) of types A.
<> =. <Oé> =

(r,a)={), af'a (A— B) =(A) = (B)

(M, x:A) = (IN), (x:A)(A)(x:A) (Va. A) = Va fa. (A)
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Operations on syntax

o Left and right projections (+)1, (+)2 from relational contexts to typing
contexts.

()i
(0, aupx2)i = (9);, a;
(©, (x1:A1)R(x2:A2))i = (©)i, xi: A

o Conversely, a “doubling” operation takes typing contexts to relational
contexts.

o Mutually defined with a “relational interpretation” (A) of types A.
<> =. <Oé> =

(r,a)={), af'a (A— B) =(A) = (B)

(M, x:A) = (IN), (x:A)(A)(x:A) (Va. A) = Va fa. (A)

o Note: Left and right hand side treated separately, so e.g. o Fa
equivalent to « pg if everything fresh.

28



Reflexive graph structure on syntax

Lemma

Q Ifor (tl : A1)R(t2 : A2) then (@), Eit A
Q IfTHt:Athen (I (t: A)(A)(t:A).

Second item is Reynolds’” Abstraction Theorem in our setting.

20



Relatedness rules: standard relation formers

O (1 AROo  Ay) (0 ARG A2) €6)

©, (x1: A1)R(x2 : Ag) - (t1 : By)S(t2 @ By)
OF ()\Xl. t1: Al — Bl)(R — 5)(/\X2. th: A — BQ)

OFr (51 A — Bl)(R — S)(S2 A — Bg) Ol (tl : A1)R(t2 : A2)
Or (51 ty : 81)5(52 tr : Bz)

@, Oépﬁ H (tl : Al)R(l’Q : AQ)
Ok (Aa. ty : Va. Ay) (VapB. R) (A8t : VB. Ay)

OF (tl : VO&.Al)(VOépB. R)(t2 : VﬂAz) O F B;1SB> rel
Ok (tl[Bl] : Al[a — Bl])R[Ozpﬁ — 81582](1'2[82] : Az[ﬂ — Bz])

20



Relatedness rules: standard relation formers

Sl (S] A — Bl)(R — S)(S2 Ay — Bg) Ol (tl : A1)R(t2 : A2)

Cl= (51 t1 : B1)5(52 tr : Bz)

20



Relatedness rules: standard relation formers

OF (tl Vo Al)(VOépﬁ. R)(t2 : VﬂAz) ©F B1SB> rel

OF (tl[Bl] : Al[Oz — Bl])R[OLpB — 81582](t2[82] : Az[ﬁ — Bz])

20



Relatedness rules: inverse image relations and substitution

Sl (tl u Bl)R(t2 un : B2)
OF (U1 : Al)([tl X tz]_lR)(U2 : A2)

@I—(tliAl)R(tgiAz) O1Ft1 =5 : A Okt =95:A
Or (51 . A]_)R(S2 : A2)

21



One more rule: the parametricity rule

@ The system get its power from inverse image relations together with
the parametricity rule.

o Recall: If T+ t: Athen (I') F (t: A)(A)(t: A).

29
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One more rule: the parametricity rule

@ The system get its power from inverse image relations together with
the parametricity rule.

o Recall: f T'Fs=t:Athen () F(s:A){A)(t:A).

o Parametricity rule states converse:

(M F(s: A){A)(t:A)
s=t:A

@ So (A) is the equality relation? No! Only in closed contexts.

o In fact, for open types, (A) is not even a homogeneous relation, since

(a) = app.

29



Interpretation in comprehensive A2 parametricity graphs

Vi, AT, Vi
R(T) - T
p* p
R(C) - C
vE, AC VE

@ A2 interpreted in p, as before.
o Relational context © interpreted as an object [©] in R(C).

@ Syntactic relation © = ARB rel interpreted as a semantic relation
[Rle: [Ale), + [Bl(e), in R(T)[ey using A2 structure.
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Interpretation of inverse image relations

o Inverse-image relation © = A;([t; x t]"'R)A; rel interpreted using
the fibration property of the parametricity graph:

o Have

[tile), : 1 — [Ai](e), = [Bi](e),
[t2](e), : 1 — [A2](e), = [B2](e),
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Interpretation of inverse image relations

o Inverse-image relation © = A;([t; x t]"'R)A; rel interpreted using
the fibration property of the parametricity graph:

o Have

[t:](e), : [Ail(e), — [Bil(e),
[t2](e), : [A2(@), — [B2](e),

o Reindex [R] : [Bi](e), <> [B2](e), in the fibration along these maps
to interpret [Htl X tz]_lR]] : [[Al]](@)l <~ [[A2]](@)2'
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Why didn’t this work before?

o If we try to replay the interpretation in the old-fashioned semantics
without comprehension, we get:

[t]: ([AD1 — ([A1])1 = ([Bi])
[t2]" - ([A])2 — ([A2])2 = ([B2])2
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Why didn’t this work before?

o If we try to replay the interpretation in the old-fashioned semantics
without comprehension, we get:

[t]": ([AD1 x ([A])1 — ([Bi])
[2]" - ([A])2 x ([A2])2 — ([B2])2

o Reindexing along this does not give a relation ([A1])1 <> ([A2])2!

@ So things work because in the new semantics, [ti](e), are global
points. Possible because of use of comprehension.
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Soundness

Theorem (Soundness for A\2R)
In every comprehensive \2 parametricity graph:
Q fTEt =ty:Athen [t1]r = [t2]r, and
Q ifOF (t1:A1)R(t2: A2) then [t1](e), X [t2](o),: 1jo] — [R]e-
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Soundness

Theorem (Soundness for A\2R)
In every comprehensive \2 parametricity graph:
Q ifT 1t =ty:Athen [t1]r = [t2]r; and
Q ifOF (t1:A1)R(t2:A2) then [t1](e), X [t2(e),: 1o — [R]e-

Substitution in relations sound by relational property.
Parametricity rule sound by identity property.

Inverse image rules sound by fibration property.
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...and completeness

Theorem (Full completeness for A2R)
There exists a comprehensive A\2 parametricity graph satisfying the
following.

O For every type I = A type, every global point 1jrj — [A]r is the
denotation [t]r of some term [ =t : A.

@ For all terms T I t1, tr : A satisfying [t1]r = [t2]r, we have
Tt =t A

© For every relation © = A1 RA; type, every global point
1je) — [Rle arises as [t1](e), % [t2](e), for terms t1, ty such that
She (tl :Al)R(tziAz).

v
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Warm-up: Va.a — « is terminal

o Want to prove [,z :Va.a — at z=Aa. Ax. x : Va.a — a.
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Warm-up: Va.a — « is terminal
o Want to prove I,z : Va.aa — a - z = Aa. Ax. x : Va. a — a.
o By extensionality, it is enough to show
z:Va.a— a,a,x:ab zla]x =x: «
o Further by the parametricity rule, it is enough to show
(M), z(YapB.p — p)w,apB, (x : a)p(y : B) & (z[a] x - a)p(y : B)

o (x:a)R(w:Va.a — ) where R = ([id x (A_.y)]p), since xpy.
o Since z(Vp. p — p)w, by instantiating ap = aR(VS.5 — )
(z[e]) (R = R)(w[¥B. 8 — 5])

hence

(zla] x) ([id x (A_.y)I7'p) (Wl¥B. 5 — B w)

(z[a] x = a)p(y - B).

[ aq



The expected consequences

Theorem (Consequences of Parametricity)
System A2R proves:
Q Va.a— aisl.

O Va.(A= B —a)—aisAxB.

Q Va.a is0.

QO Va.(A—a)—(B—a)—a is A+B.

Q Va. (V8. (T(B) = a)) — «ais Ja. T(«).

Q@ The type Va.(T(a) = a) — « is the carrier of the initial T-algebra
for all functorial type expressions T (c).

@ The type Ja. (o — T(«)) X « is the carrier of the final T-coalgebra
for all functorial type expressions T (c).

Q@ Terms of type Va. F(a, ) — G(a, «v) for mixed-variance type
expressions F and G are dinatural.
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Some comments on the proof

@ As usual, relations representing graphs of functions play a key role.
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Some comments on the proof

@ As usual, relations representing graphs of functions play a key role.

e Two ways to define concrete graphs:

> (x:A)gri(f)(y:B) if (fx:B){(B)(y:B).

> (x:A)gn(f)(f w:B) if there exists w:A such that (x:A)(A)(w:A).

» Since we only have pseudo-identities, these do not coincide in general.

o gr.(f) == [f x id]71(B) defined using fibrational structure,
gn(f) =[id x f]i(A) using derived opfibrational structure.

@ Subtlety: initial algebras use inverse image pseudographs, final
coalgebras direct image ones.
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Summary

(]

(*]

A2 fibrations with comprehension property as natural models of A2
(sound and complete).

Comprehensive \2 parametricity graphs form good models of
relational parametricity for A2, with usual strong consequences.

Reasoning in the models using a sound and complete type theory A2R,
including inverse image relations.

Proof of consequences of parametricity involves novel ingredients:

» direct image relations via impredicative encoding,

» no identity relations available, and

» two different pseudo-graph relations (using inverse and direct images).
Future work: Extend to e.g. dependent type theory.

M Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson

Comprehensive parametric polymorphism: categorical models and
type theory.
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