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Ordinals, classically in set theory

Definition
A set α is an ordinal if it is transitive and ∈ is well-founded on α:
I x ∈ α→ x ⊆ α,
I Every nonempty X ⊆ α has an ∈-least element.

(Obviously too strong constructively!)

This makes ∈ a strict total order on α; we often write < for ∈.

Important property: there cannot be an infinitely descending
sequence of ordinals

α0 > α1 > α2 > . . .

E.g. already Turing [1949] used ordinals to prove termination of
programs.
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Building ordinals

I 0 = ∅ is an ordinal;

I 1 = 0 ∪ {0} is an ordinal;

I 2 = 1 ∪ {1} is an ordinal (classically);

I 3, 4, 5, . . . are ordinals.

I ω =
⋃

n∈N n is an ordinal.

I ω + 1 = ω ∪ {ω} is an ordinal;

I ω + 2, ω + 3, . . . are ordinals;

I ω · 2 =
⋃

n<ω (ω + n) is an ordinal.
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Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.

3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.
3



Building ordinals ∪ { Building ordinals }
I ω · 2 =

⋃
n<ω (ω + n) is an ordinal.

I ω · 2, ω · 3, . . . are ordinals;

I ω2 = ω · ω =
⋃

n<ω (ω · n) is an ordinal.

I ω2 · 2, ω2 · 3, . . . are ordinals;

I ω3 =
⋃

n<ω (ω
2 · n) is an ordinal.

I ω4, ω5, . . . are ordinals;

I ωω =
⋃

n<ω ω
n is an ordinal.

I ωω, ωω
ω
, . . . are ordinals;

I ε0 =
⋃
{ωω, ωωω

, ωω
ωω

, . . .} is an ordinal.
3



Cantor Normal Form

ε0 is the least solution to the equation α = ωα.

Fact
Every ordinal α can be written uniquely as

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

In particular, ε0 = ωε0 , so we can take β1 = ε0.

But, for α < ε0, we have βi < α for every i .

Hence if we compute the Cantor Normal Form

βi = ωγ1 + ωγ2 + · · ·+ ωγm

and so on, we get decreasing sequences

α > βi > γj > . . .

which must terminate.

This gives a finite representation of α!
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Ordinal notation systems for ordinals below ε0

Cantor Normal Form gives a finite and simple notation for ordinals
α below ε0:

I α is either 0, or

I represented by two ordinals α = ωβ1 + γ2.

Simply binary trees! [Dershowitz 1993]

0 β1 γ2

But: uniqueness of representation has been lost. How can we
recover this?
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Recovering uniqueness of representation
Three different approaches to recover uniqueness, using features of
cubical Agda [Vezzosi, Mörtberg and Abel 2019]:

I A subset approach

I A mutual approach

I A higher inductive approach

Previous work representing ordinals in theorem provers: Manolios
and Vroon [2005]; Castéran and Contejean [2006]; Grimm [2013];
Blanchette, Popescu and Traytel [2014]; Blanchette, Fleury and
Traytel [2017]; Schmitt [2017]; . . .

Why care?

Unique representatives make the ordinal notations
behave like ordinals.

Why cubical?

Want a univalence principle which computes, and
higher inductive types.
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A subset approach
See e.g. Buchholz [1991]

data Tree : Type0 where
0 : Tree
ω^_+_ : Tree → Tree → Tree

We single out the trees in Cantor Normal Form:

data isCNF : Tree → Type0 where
0IsCNF : isCNF 0
ω^+IsCNF : isCNF a → isCNF b → a ≥ fst b

→ isCNF (ω^ a + b)

This uses _≥_ : Tree→Tree→Type0 (defined inductively), and

fst : Tree → Tree
fst 0 = 0
fst (ω^ a + _) = a

7
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SigmaOrd

SigmaOrd : Type0
SigmaOrd = Σ \(a : Tree) → isCNF a

This is a “subset” of Tree in the sense that isCNF a is
proof-irrelevant:

isCNFIsPropValued : isProp (isCNF a)

Pro: Not requiring any fancy features.

Con: “Junk terms”. Code duplication.

8
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Amutual approach



Intrinsically Cantor Normal Form ordinals

By using mutual definitions, we get correct-by-construction ordinals
in Cantor Normal Form.

We simultaneously define

data MutualOrd : Type0
data _<_ : MutualOrd → MutualOrd → Type0
fst : MutualOrd → MutualOrd

by induction-induction-recursion [N.-F. 2014].
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MutualOrd
data MutualOrd where

0 : MutualOrd
ω^_+_[_] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

where a ≥ b = a > b ] a ≡ b.

data _<_ where
<1 : 0 < ω^ a + b [ r ]
<2 : a < c → ω^ a + b [ r ] < ω^ c + d [ s ]
<3 : a ≡ c → b < d → ω^ a + b [ r ] < ω^ c + d [ s ]

fst 0 = 0
fst (ω^ a + _ [ _ ]) = a

Remark: there is an equivalent non-inductive-recursive definition
where we define the graph of fst inductively.
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Examples

I 0

I 1 = ω^ 0 + 0 [ inj2 refl ]

I ω = ω^ 1 + 0 [ inj1 <1 ]

I ω^〈 a 〉 = ω^ a + 0 [ ≥0 ]
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Basic properties

Proposition
_<_ is proof-irrelevant, i.e. p ≡ q for any p, q : a < b.

Proposition
_<_ is trichotomous, i.e. we can define

<-tri : (a b : MutualOrd) → a < b ] a ≥ b

Theorem
Transfinite induction holds for MutualOrd, i.e. there is a proof

MTI : (P : MutualOrd → Type `)
→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → P x

Not provable without unique representation!
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Ordinal addition

Addition on ordinals is famously non-commutative

1+ ω = ω < ω + 1

In general, if γ < ωβ then γ + ωβ = ωβ .

In particular, if α < β then ωα < ωβ , hence ωα + ωβ = ωβ .

We now want to implement addition on MutualOrd. We
simultaneously define

_+_ : MutualOrd → MutualOrd → MutualOrd
≥fst+ : {a : MutualOrd} (b c : MutualOrd)

→ a ≥ fst b → a ≥ fst c → a ≥ fst (b + c)
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Addition on MutualOrd

Remember: if α < β then ωα + ωβ = ωβ .

0 + b = {?0 : MutualOrd}
a + 0 = {?1 : MutualOrd}
(ω^ a + c [ r ]) + (ω^ b + d [ s ]) = {?2 : MutualOrd}

≥fst+ 0 _ r s = s
≥fst+ (ω^ _ + _ [ _ ]) 0 r s = r
≥fst+ (ω^ b + _ [ _ ]) (ω^ c + _ [ _ ]) r s with <-tri b c
... | inj1 b<c = s
... | inj2 b≥c = r
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Multiplication on MutualOrd

_·_ : MutualOrd → MutualOrd → MutualOrd
0 · b = 0
a · 0 = 0
a · (ω^ 0 + d [ r ]) = a + a · d
(ω^ a + c [ r ]) · (ω^ b + d [ s ]) =
M.ω^〈 a + b 〉 + (ω^ a + c [ r ] · d)

Note: All in terms of previous operations, so no simultaneous
lemma needed.
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Ahigher inductive approach



Uniqueness by making things the same

We want to avoid redundant representations of ordinals

α = ωβ1 + ωβ2 + · · ·+ ωβn

With a mutual approach, we could require β1 ≥ β2 ≥ . . . ≥ βn,
hence ensuring uniqueness of the list [β1, . . . , βn].

Another option: quotient out the difference by identifying different
permutations of the exponents

ωβ1 ⊕ ωβ2 ≡ ωβ2 ⊕ ωβ1

Cubical Agda allows this via higher inductive types [Lumsdaine and
Shulman 2019].
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A higher inductive approach
Inspired by Licata’s [2014] encoding of finite multisets [Blanchette, Fleury and Traytel
2017] as a HIT

A Higher Inductive Type also allows constructors targetting
equalities between elements (and between equalities, equalities
between equalities, . . . ).

Soundness: has a model in cubical sets [Coquand, Huber and
Mörtberg 2018].

We define:
data HITOrd : Type0 where

0 : HITOrd
ω^_⊕_ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ω^ a ⊕ ω^ b ⊕ c ≡ ω^ b ⊕ ω^ a ⊕ c
trunc : isSet HITOrd
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Example

example : (a b c : HITOrd)
→ ω^ a ⊕ ω^ b ⊕ ω^ c ⊕ 0 ≡ ω^ c ⊕ ω^ b ⊕ ω^ a ⊕ 0

example a b c = begin
ω^ a ⊕ ω^ b ⊕ ω^ c ⊕ 0 ≡〈 swap a b _ 〉
ω^ b ⊕ ω^ a ⊕ ω^ c ⊕ 0 ≡〈 cong (ω^ b ⊕_) (swap a c _) 〉
ω^ b ⊕ ω^ c ⊕ ω^ a ⊕ 0 ≡〈 swap b c _ 〉
ω^ c ⊕ ω^ b ⊕ ω^ a ⊕ 0

18



Pattern matching on HITOrd

Pattern matching on HITOrd requires all functions f to respect
swap: must show

f (ω^ a ⊕ ω^ b ⊕ c) ≡ f (ω^ b ⊕ ω^ a ⊕ c)

Hence it is convenient to define commutative operations on
HITOrd.

For arithmetic, these are the so-called Hessenberg sum and
product [Hessenberg, 1906].
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Hessenberg sum

_⊕_ : HITOrd → HITOrd → HITOrd
x ⊕ y = {?0 : HITOrd}

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
_⊕_ is commutative.
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Hessenberg sum

_⊕_ : HITOrd → HITOrd → HITOrd
0 ⊕ y = {?0 : HITOrd}
(ω^ a ⊕ b) ⊕ y = {?1 : HITOrd}
(swap a b c i) ⊕ y = {?2 : . . .≡ . . .} i

(trunc p q i j) ⊕ y = {?3 : . . .≡...≡... . . .} i j

In the swap case, we have to prove

?2 : ω^ a ⊕ ω^ b ⊕ (c ⊕ y) ≡ ω^ b ⊕ ω^ a ⊕ (c ⊕ y)

Proposition
_⊕_ is commutative.
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Which approach is better?

All of them!

Depending on the application, e.g. the mutual approach for
properties of the order, the HIT approach for commutative
operations.

Even better:

Theorem
SigmaOrd, MutualOrd and HITOrd are equivalent.

Using the univalance principle [Voevodsky 2010] (which computes
in cubical Agda), equivalent types are identical:

Corollary
SigmaOrd, MutualOrd and HITOrd are identical.

21
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MutualOrd and HITOrd are equivalent

MutualOrd HITOrd

M≡H:MutualOrd≡HITOrd
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Operations via univalence

By using univalence, we can transport operations and proofs
between MutualOrd and HITOrd.

_<H_ : HITOrd → HITOrd → Type0
_<H_ = transport (λ i → M≡H i → M≡H i → Type0) _<_

_⊕M_ : MutualOrd → MutualOrd → MutualOrd
_⊕M_ = transport (λ i → H≡M i → H≡M i → H≡M i) _⊕_
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Transporting proofs

We can also transport properties. For instance: define

Dec : (A : Type `) → (A → A → Type `’) → Type (` t `’)
Dec A _<_ = (x y : A) → x < y ] ¬ x < y

We can easily prove
<-dec : Dec MutualOrd _<_

Hence we can construct
<H-dec : Dec HITOrd _<H_
<H-dec = transport (λ i → Dec (M≡H i) (<Path i)) <-dec

where
<Path : PathP (λ i → M≡H i → M≡H i → Type0) _<_ _<H_

is a dependent equality (“path”) between _<_ and _<H_.
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It computes!
Define

lt : HITOrd → HITOrd → Bool
lt a b = isLeft (<H-dec a b)

for convenience.

Ex[<H-decComp] :
lt 0 0 ≡ false

× lt H.ω ((H.1 ⊕ H.1) ⊗ H.ω) ≡ true
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 +H H.ω 〉) ≡ false
× lt (H.ω^〈 H.ω 〉) (H.ω^〈 H.1 ⊕ H.ω 〉) ≡ true

Ex[<H-decComp] = (refl , refl , refl , refl)

Ex[⊕MComp] : M.1 ⊕M M.ω ≡ M.ω + M.1
Ex[⊕MComp] = refl
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