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What are ordinals?
“Numbers” for ranking/ordering:

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3, . . .

ω2, . . . , ω2 · 3 + ω · 7 + 13, . . . , ωω, . . . , ε0 = ωω
ω...

, . . . , ε17, . . .

Classically: sets with an order <, which is

I transitive: (a < b)→ (b < c)→ (a < c)

I wellfounded: every sequence a0 > a1 > a2 > a3 > . . . terminates

I and trichotomous: (a < b) ∨ (a = b) ∨ (b < a)

I . . . or extensional (instead of trichotomous):
(∀a.a < b↔ a < c)→ b = c

Perhaps more importantly: what are they for?
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Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0

!

// X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.
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Transfinite iteration
Let F : Set→ Set be a functor preserving κ-colimits.

The initial algebra of F can be constructed as the colimit of the sequence
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Termination of processes

I Programs terminating [Turing 1949]

I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]

I Termination of Goodstein sequences [Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.
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Ordinals in constructive type theory

Problem/feature of a constructive setting: different definitions differ!

Classical definition not particularly well suited for either iteration or termination.

Three standard notions of “ordinals” in computer science:

I Cantor normal forms

I Brouwer trees

I Wellfounded, extensional, and transitive orders

How are they connected? Why can we call them “ordinals”?

Need features and concepts of HoTT to give “correct” formulations.
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Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T ) isCNF(α) for the type of Cantor Normal Forms.
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Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).
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Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?
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Brouwer trees quotient inductive-inductively

f ≈ g = (f . g)× (g . f), where f . g if ∀i. ∃j. f i ≤ g j.

x < y if succx ≤ y.
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Characterising ≤ using encode-decode

We use an encode-decode method to characterise x ≤ y: define

Code : Brw→ Brw→ Prop

such that Codex y ≡ (x ≤ y).

For example:

Code (succx) (limit f) = (∃n : N) (Code (succx) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (x ≤ y)→ Codex y.
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Basic properties of Brouwer trees

Theorem: The order < is wellfounded and extensional.

Theorem: It is decidable if a Brouwer tree is finite, but decidable (even
¬¬-stable) equality in general implies Markov’s Principle.

Can prove expected properties such as:
I n · ω ≡ ω;

I If a < ωb then a+ ωb ≡ ωb;

I ε0 = limit (ω, ωω, ωω
ω

, ωω
ωω

, . . .) is a fixed point ωε0 = ε0;

I and so on.
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Extensional wellfounded orders

The type Ord consists of pairs (X : Type,≺: X → X → Prop) such that:

I ≺ is transitive

I x ≺ y → y ≺ z → x ≺ z;

I ≺ is extensional

I elements with the same ≺-predecessors are equal;

I ≺ is wellfounded

I every element is accessible, where x is accessible if every y ≺ x is accessible.

Can be found in the HoTT book, further developed by Escardó; inspired by
Taylor.
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Taylor.
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The order on extensional wellfounded orders
Let (X,≺X), (Y,≺Y ) : Ord.

X ≤ Y is:
I a monotone function f : X → Y

I such that: if y ≺Y f x, then there is x0 ≺X x such that f x0 = y.
Such an f is a simulation.

For y : Y , define Y/y :≡ Σ(y′ : Y ).y′ ≺ y.

X < Y is:
I a simulation f : X ≤ Y

I such that there is y : Y and f factors through X ' Y/y.
f : X < Y is a bounded simulation.
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Basic properties of extensional wellfounded orders

Theorem: the order on Ord is extensional and wellfounded.

Theorem: limits of increasing sequences of Ord can be calculated.

Theorem: “nothing” is decidable.

For example, deciding whether an Ord is a successor implies LEM.
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Abstract setting

What do Cnf, Brw, Ord have to do with each other?

Why are they “types of ordinals”?

Assume we have a set A with relations <,≤ such that:

I < is transitive and irreflexive;
I ≤ is transitive, reflexive, and antisymmetric;
I (<) ⊆ (≤);
I (< ◦ ≤) ⊆ (<).

Note: (≤ ◦ <) ⊆ (<) for Ord is equivalent to LEM (cf. Taylor).
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Abstract setting: zero, successor, limit classification

a : A is zero if ∀b.a ≤ b. a is a successor of b if
a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)
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Abstract arithmetic: addition

(A,<,≤) has addition if there is a function + : A→ A→ A such that:

is-zero(a)→ c+ a = c

a is-suc-of b→ d is-suc-of (c+ b)→ c+ a = d

a is-lim-of f → b is-sup-of (λi.c+ fi)→ c+ a = b

(A,<,≤) has unique addition if there is exactly one function with these
properties.

Concrete results: Cnf and Brw have unique addition. Ord has addition.
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Addition for Cantor Normal Forms

Standard definition:
0 + b = b
a + 0 = a
(ω^ a + c) + (ω^ b + d) with <-tri a b
... | inl a<b = ω^ b + d
... | inr a≥b = ω^ a + (c + ω^ b + d)

Followed by proofs that + preserves isCNF.

Perhaps less standard: to prove correctness, need to define subtraction.
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Abstract arithmetic: multiplication

Assume that (A,<,≤) has addition.

(A,<,≤) has multiplication if we have · : A→ A→ A such that:

is-zero(a)→ c · a = a

a is-suc-of b→ c · a = c · b+ c

a is-lim-of f → b is-sup-of (λi.c · fi)→ c · a = b

(A,<,≤) has unique multiplication if it has unique addition and there is exactly
one function with the above properties.

Concrete results: Cnf and Brw have unique multiplication. Ord has
multiplication.
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Multiplication for Brouwer trees

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f) = limit (λi. x · fi)

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.
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Multiplication for Brouwer trees

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f {incr-f})with decZerox
... | yes x≡0 = zero
... | no x6≡0 = limit (λi. x · fi) {x·-increasing x 6≡0 incr-f}

But! λi. zero · fi is not increasing even if f is.
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Abstract arithmetic: exponentation

Assume that (A,<,≤) has addition and multiplication.

A has exponentation with base c if there is exp(c,−) : A→ A such that:

is-zero(b)→ a is-suc-of b→ exp(c, b) = a

a is-suc-of b→ exp(c, a) = exp(c, b) · c
a is-lim-of f → ¬is-zero(c)→ b is-sup-of (exp(c, fi))→ exp(c, a) = b

a is-lim-of f → is-zero(c)→ exp(c, a) = c

A has unique exponentation with base c if it has unique addition and
multiplication, and if exp(c,−) is unique.

Concrete results: Brw and Cnf and have unique exponentation (with base ω).
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Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)
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(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22



Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)
22



Summary
Constructively, different definitions of ordinals are useful for different purposes.

We have considered three different notions, ranging from “decidable” to
“undecidable” in general.

Future work:
I Other notions of ordinals (e.g. based on the Veblen Normal Form, or other

types of trees [Jervell 2006])?
I Can we make Brw being “partially decidable” precise using the notion of

semi-decidability? [Veltri 2017, Escardó and Knapp 2017]
More details:
I Connecting Constructive Notions of Ordinals in Homotopy Type Theory,

MFCS 2021 (arxiv:2104.02549)
I Cubical Agda formalisation:

bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/
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