
Different Notions of Ordinals
in Homotopy Type Theory

Fredrik Nordvall Forsberg
University of Strathclyde

Joint work with Nicolai Kraus and Chuangjie Xu

HOTTEST seminar

3 March 2022

1

What are ordinals?
“Numbers” for ranking/ordering:

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3, . . .

ω2, . . . , ω2 · 3 + ω · 7 + 13, . . . , ωω, . . . , ε0 = ωω
ω...

, . . . , ε17, . . .

Classically: sets with an order <, which is

I transitive: (a < b)→ (b < c)→ (a < c)

I wellfounded: every sequence a0 > a1 > a2 > a3 > . . . terminates

I and trichotomous: (a < b) ∨ (a = b) ∨ (b < a)

I . . . or extensional (instead of trichotomous):
(∀a.a < b↔ a < c)→ b = c

Perhaps more importantly: what are they for?

2

What are ordinals?
“Numbers” for ranking/ordering:

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3, . . .

ω2, . . . , ω2 · 3 + ω · 7 + 13, . . . , ωω, . . . , ε0 = ωω
ω...

, . . . , ε17, . . .

Classically: sets with an order <, which is

I transitive: (a < b)→ (b < c)→ (a < c)

I wellfounded: every sequence a0 > a1 > a2 > a3 > . . . terminates

I and trichotomous: (a < b) ∨ (a = b) ∨ (b < a)

I . . . or extensional (instead of trichotomous):
(∀a.a < b↔ a < c)→ b = c

Perhaps more importantly: what are they for?

2

What are ordinals?
“Numbers” for ranking/ordering:

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3, . . .

ω2, . . . , ω2 · 3 + ω · 7 + 13, . . . , ωω, . . . , ε0 = ωω
ω...

, . . . , ε17, . . .

Classically: sets with an order <, which is

I transitive: (a < b)→ (b < c)→ (a < c)

I wellfounded: every sequence a0 > a1 > a2 > a3 > . . . terminates

I and trichotomous: (a < b) ∨ (a = b) ∨ (b < a)

I . . . or extensional (instead of trichotomous):
(∀a.a < b↔ a < c)→ b = c

Perhaps more importantly: what are they for?

2

What are ordinals?
“Numbers” for ranking/ordering:

0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . , ω · 3, . . .

ω2, . . . , ω2 · 3 + ω · 7 + 13, . . . , ωω, . . . , ε0 = ωω
ω...

, . . . , ε17, . . .

Classically: sets with an order <, which is

I transitive: (a < b)→ (b < c)→ (a < c)

I wellfounded: every sequence a0 > a1 > a2 > a3 > . . . terminates

I and trichotomous: (a < b) ∨ (a = b) ∨ (b < a)

I . . . or extensional (instead of trichotomous):
(∀a.a < b↔ a < c)→ b = c

Perhaps more importantly: what are they for?
2

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0

!

// X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0

!

// X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0

!

// X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅

Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0

!

// X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!)

// X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//

F 2(!)

// . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . .

where

X0 = ∅
Xn+1 = F (Xn)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . .

where

X0 = ∅
Xα+1 = F (Xα)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a finitary functor.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . . // Xω

where

X0 = ∅
Xα+1 = F (Xα)

µF = Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a functor preserving κ-colimits.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . . // Xω

// Xω+1
// . . .

where

X0 = ∅
Xα+1 = F (Xα)

µF =

Xω = colimβ<ωXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a functor preserving κ-colimits.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . . // Xω

// Xω+1
// . . .

where

X0 = ∅
Xα+1 = F (Xα)

µF =

Xλ = colimβ<λXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a functor preserving κ-colimits.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . . // Xω

// Xω+1
// . . . // Xκ

where

X0 = ∅
Xα+1 = F (Xα)

µF =

Xλ = colimβ<λXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.

3

Transfinite iteration
Let F : Set→ Set be a functor preserving κ-colimits.

The initial algebra of F can be constructed as the colimit of the sequence

X0
! // X1

F (!) // X2
//F 2(!) // . . . // Xω

// Xω+1
// . . . // Xκ

where

X0 = ∅
Xα+1 = F (Xα)

µF =

Xλ = colimβ<λXβ

µF = Xκ

Useful: Definitional principle where ordinals are classified as 0, α + 1 or a limit.
3

Termination of processes

I Programs terminating [Turing 1949]

I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]

I Termination of Goodstein sequences [Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.

4

Termination of processes
I Programs terminating [Turing 1949]
I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]
I Termination of Goodstein sequences [Goodstein 1944], the Hydra game

[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.

4

Termination of processes
I Programs terminating [Turing 1949]
I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]
I Termination of Goodstein sequences [Goodstein 1944], the Hydra game

[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.

4

Termination of processes
I Programs terminating [Turing 1949]
I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]
I Termination of Goodstein sequences [Goodstein 1944], the Hydra game

[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.

4

Termination of processes
I Programs terminating [Turing 1949]
I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]
I Termination of Goodstein sequences [Goodstein 1944], the Hydra game

[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.

4

Termination of processes
I Programs terminating [Turing 1949]
I Consistency proof e.g. of Peano’s axioms [Gentzen 1936]
I Termination of Goodstein sequences [Goodstein 1944], the Hydra game

[Kirby&Paris 1982]:

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.
4

Ordinals in constructive type theory

Problem/feature of a constructive setting: different definitions differ!

Classical definition not particularly well suited for either iteration or termination.

Three standard notions of “ordinals” in computer science:

I Cantor normal forms

I Brouwer trees

I Wellfounded, extensional, and transitive orders

How are they connected? Why can we call them “ordinals”?

Need features and concepts of HoTT to give “correct” formulations.

5

Ordinals in constructive type theory

Problem/feature of a constructive setting: different definitions differ!

Classical definition not particularly well suited for either iteration or termination.

Three standard notions of “ordinals” in computer science:

I Cantor normal forms

I Brouwer trees

I Wellfounded, extensional, and transitive orders

How are they connected? Why can we call them “ordinals”?

Need features and concepts of HoTT to give “correct” formulations.

5

Ordinals in constructive type theory

Problem/feature of a constructive setting: different definitions differ!

Classical definition not particularly well suited for either iteration or termination.

Three standard notions of “ordinals” in computer science:

I Cantor normal forms

I Brouwer trees

I Wellfounded, extensional, and transitive orders

How are they connected? Why can we call them “ordinals”?

Need features and concepts of HoTT to give “correct” formulations.

5

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0

leaf

: T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +−

node

: T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Cantor normal forms
Motivational classical theorem
Every ordinal α can be written uniquely

α = ωβ1 + ωβ2 + · · ·+ ωβn

for some β1 ≥ β2 ≥ · · · ≥ βn.

Let T be the type of unlabeled binary trees:

0 : T
ω− +− : T → T → T

Define isCNF(α) to express β1 ≥ β2 ≥ · · · ≥ βn (lexicographical order).

We write Cnf = (Σα : T) isCNF(α) for the type of Cantor Normal Forms.

6

Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).

7

Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).

7

Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).

7

Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).

7

Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).

7

Basic properties of Cantor Normal Forms
Equivalent implementations [Ghani, N.-F., Xu 2020]:
(i) inductive-inductively inlining the isCNF condition (no junk!)
(ii) as finite hereditary multisets.

Theorem: < is trichotomous, i.e. have <-tri : (x, y : Cnf)→ (x < y)](x ≥ y).

Corollary: Cnf has decidable equality.

Theorem: Transfinite induction holds for Cnf, i.e. there is a proof

TI : (P : Cnf → Type `)→ (∀x.(∀y < x.P y)→ P x)→ ∀x.P x

Theorem: Can classify each Cnf as zero, successor or limit, but cannot compute
limits (implies WLPO).

7

Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?

8

Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?

8

Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?

8

Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?

8

Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?

8

Brouwer ordinal trees

Another definition: the usual inductive type O generated by

zero : O succ : O → O sup : (N→ O)→ O

Problem:

sup (0, 1, 2, 3, . . .) 6= sup (1, 2, 3, . . .)

sup (0, 1, 2, 3, . . .) 6= sup (1, 0, 2, 3, . . .)

How to fix this without losing wellfoundedness, classification, and so on?

8

Brouwer trees quotient inductive-inductively

f ≈ g = (f . g)× (g . f), where f . g if ∀i. ∃j. f i ≤ g j.

x < y if succx ≤ y.

9

Brouwer trees quotient inductive-inductively

f ≈ g = (f . g)× (g . f), where f . g if ∀i. ∃j. f i ≤ g j.

x < y if succx ≤ y.

9

Brouwer trees quotient inductive-inductively

f ≈ g = (f . g)× (g . f), where f . g if ∀i. ∃j. f i ≤ g j.

x < y if succx ≤ y.

9

Characterising ≤ using encode-decode

We use an encode-decode method to characterise x ≤ y: define

Code : Brw→ Brw→ Prop

such that Codex y ≡ (x ≤ y).

For example:

Code (succx) (limit f) = (∃n : N) (Code (succx) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (x ≤ y)→ Codex y.

10

Characterising ≤ using encode-decode

We use an encode-decode method to characterise x ≤ y: define

Code : Brw→ Brw→ Prop

such that Codex y ≡ (x ≤ y).

For example:

Code (succx) (limit f) = (∃n : N) (Code (succx) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (x ≤ y)→ Codex y.

10

Characterising ≤ using encode-decode

We use an encode-decode method to characterise x ≤ y: define

Code : Brw→ Brw→ Prop

such that Codex y ≡ (x ≤ y).

For example:

Code (succx) (limit f) = (∃n : N) (Code (succx) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (x ≤ y)→ Codex y.

10

Characterising ≤ using encode-decode

We use an encode-decode method to characterise x ≤ y: define

Code : Brw→ Brw→ Prop

such that Codex y ≡ (x ≤ y).

For example:

Code (succx) (limit f) = (∃n : N) (Code (succx) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (x ≤ y)→ Codex y.

10

Basic properties of Brouwer trees

Theorem: The order < is wellfounded and extensional.

Theorem: It is decidable if a Brouwer tree is finite, but decidable (even
¬¬-stable) equality in general implies Markov’s Principle.

Can prove expected properties such as:
I n · ω ≡ ω;

I If a < ωb then a+ ωb ≡ ωb;

I ε0 = limit (ω, ωω, ωω
ω

, ωω
ωω

, . . .) is a fixed point ωε0 = ε0;

I and so on.

11

Basic properties of Brouwer trees

Theorem: The order < is wellfounded and extensional.

Theorem: It is decidable if a Brouwer tree is finite, but decidable (even
¬¬-stable) equality in general implies Markov’s Principle.

Can prove expected properties such as:
I n · ω ≡ ω;

I If a < ωb then a+ ωb ≡ ωb;

I ε0 = limit (ω, ωω, ωω
ω

, ωω
ωω

, . . .) is a fixed point ωε0 = ε0;

I and so on.

11

Basic properties of Brouwer trees

Theorem: The order < is wellfounded and extensional.

Theorem: It is decidable if a Brouwer tree is finite, but decidable (even
¬¬-stable) equality in general implies Markov’s Principle.

Can prove expected properties such as:
I n · ω ≡ ω;

I If a < ωb then a+ ωb ≡ ωb;

I ε0 = limit (ω, ωω, ωω
ω

, ωω
ωω

, . . .) is a fixed point ωε0 = ε0;

I and so on.

11

Basic properties of Brouwer trees

Theorem: The order < is wellfounded and extensional.

Theorem: It is decidable if a Brouwer tree is finite, but decidable (even
¬¬-stable) equality in general implies Markov’s Principle.

Can prove expected properties such as:
I n · ω ≡ ω;

I If a < ωb then a+ ωb ≡ ωb;

I ε0 = limit (ω, ωω, ωω
ω

, ωω
ωω

, . . .) is a fixed point ωε0 = ε0;

I and so on.

11

Extensional wellfounded orders

The type Ord consists of pairs (X : Type,≺: X → X → Prop) such that:

I ≺ is transitive

I x ≺ y → y ≺ z → x ≺ z;

I ≺ is extensional

I elements with the same ≺-predecessors are equal;

I ≺ is wellfounded

I every element is accessible, where x is accessible if every y ≺ x is accessible.

Can be found in the HoTT book, further developed by Escardó; inspired by
Taylor.

12

Extensional wellfounded orders

The type Ord consists of pairs (X : Type,≺: X → X → Prop) such that:

I ≺ is transitive
I x ≺ y → y ≺ z → x ≺ z;

I ≺ is extensional

I elements with the same ≺-predecessors are equal;

I ≺ is wellfounded

I every element is accessible, where x is accessible if every y ≺ x is accessible.

Can be found in the HoTT book, further developed by Escardó; inspired by
Taylor.

12

Extensional wellfounded orders

The type Ord consists of pairs (X : Type,≺: X → X → Prop) such that:

I ≺ is transitive
I x ≺ y → y ≺ z → x ≺ z;

I ≺ is extensional
I elements with the same ≺-predecessors are equal;

I ≺ is wellfounded

I every element is accessible, where x is accessible if every y ≺ x is accessible.

Can be found in the HoTT book, further developed by Escardó; inspired by
Taylor.

12

Extensional wellfounded orders

The type Ord consists of pairs (X : Type,≺: X → X → Prop) such that:

I ≺ is transitive
I x ≺ y → y ≺ z → x ≺ z;

I ≺ is extensional
I elements with the same ≺-predecessors are equal;

I ≺ is wellfounded
I every element is accessible, where x is accessible if every y ≺ x is accessible.

Can be found in the HoTT book, further developed by Escardó; inspired by
Taylor.

12

Extensional wellfounded orders

The type Ord consists of pairs (X : Type,≺: X → X → Prop) such that:

I ≺ is transitive
I x ≺ y → y ≺ z → x ≺ z;

I ≺ is extensional
I elements with the same ≺-predecessors are equal;

I ≺ is wellfounded
I every element is accessible, where x is accessible

inductive definition

if every y ≺ x is accessible.

Can be found in the HoTT book, further developed by Escardó; inspired by
Taylor.

12

The order on extensional wellfounded orders
Let (X,≺X), (Y,≺Y) : Ord.

X ≤ Y is:
I a monotone function f : X → Y

I such that: if y ≺Y f x, then there is x0 ≺X x such that f x0 = y.
Such an f is a simulation.

For y : Y , define Y/y :≡ Σ(y′ : Y).y′ ≺ y.

X < Y is:
I a simulation f : X ≤ Y

I such that there is y : Y and f factors through X ' Y/y.
f : X < Y is a bounded simulation.

13

The order on extensional wellfounded orders
Let (X,≺X), (Y,≺Y) : Ord.

X ≤ Y is:
I a monotone function f : X → Y

I such that: if y ≺Y f x, then there is x0 ≺X x such that f x0 = y.
Such an f is a simulation.

For y : Y , define Y/y :≡ Σ(y′ : Y).y′ ≺ y.

X < Y is:
I a simulation f : X ≤ Y

I such that there is y : Y and f factors through X ' Y/y.
f : X < Y is a bounded simulation.

13

The order on extensional wellfounded orders
Let (X,≺X), (Y,≺Y) : Ord.

X ≤ Y is:
I a monotone function f : X → Y

I such that: if y ≺Y f x, then there is x0 ≺X x such that f x0 = y.
Such an f is a simulation.

For y : Y , define Y/y :≡ Σ(y′ : Y).y′ ≺ y.

X < Y is:
I a simulation f : X ≤ Y

I such that there is y : Y and f factors through X ' Y/y.
f : X < Y is a bounded simulation.

13

The order on extensional wellfounded orders
Let (X,≺X), (Y,≺Y) : Ord.

X ≤ Y is:
I a monotone function f : X → Y

I such that: if y ≺Y f x, then there is x0 ≺X x such that f x0 = y.
Such an f is a simulation.

For y : Y , define Y/y :≡ Σ(y′ : Y).y′ ≺ y.

X < Y is:
I a simulation f : X ≤ Y

I such that there is y : Y and f factors through X ' Y/y.
f : X < Y is a bounded simulation.

13

Basic properties of extensional wellfounded orders

Theorem: the order on Ord is extensional and wellfounded.

Theorem: limits of increasing sequences of Ord can be calculated.

Theorem: “nothing” is decidable.

For example, deciding whether an Ord is a successor implies LEM.

14

Basic properties of extensional wellfounded orders

Theorem: the order on Ord is extensional and wellfounded.

Theorem: limits of increasing sequences of Ord can be calculated.

Theorem: “nothing” is decidable.

For example, deciding whether an Ord is a successor implies LEM.

14

Basic properties of extensional wellfounded orders

Theorem: the order on Ord is extensional and wellfounded.

Theorem: limits of increasing sequences of Ord can be calculated.

Theorem: “nothing” is decidable.

For example, deciding whether an Ord is a successor implies LEM.

14

Basic properties of extensional wellfounded orders

Theorem: the order on Ord is extensional and wellfounded.

Theorem: limits of increasing sequences of Ord can be calculated.

Theorem: “nothing” is decidable.

For example, deciding whether an Ord is a successor implies LEM.

14

Basic properties of extensional wellfounded orders

Theorem: the order on Ord is extensional and wellfounded.

Theorem: limits of increasing sequences of Ord can be calculated.

Theorem: “nothing” is decidable.

For example, deciding whether an Ord is a successor implies LEM.

14

Abstract setting

What do Cnf, Brw, Ord have to do with each other?

Why are they “types of ordinals”?

Assume we have a set A with relations <,≤ such that:

I < is transitive and irreflexive;
I ≤ is transitive, reflexive, and antisymmetric;
I (<) ⊆ (≤);
I (< ◦ ≤) ⊆ (<).

Note: (≤ ◦ <) ⊆ (<) for Ord is equivalent to LEM (cf. Taylor).

15

Abstract setting

What do Cnf, Brw, Ord have to do with each other?

Why are they “types of ordinals”?

Assume we have a set A with relations <,≤ such that:

I < is transitive and irreflexive;
I ≤ is transitive, reflexive, and antisymmetric;
I (<) ⊆ (≤);
I (< ◦ ≤) ⊆ (<).

Note: (≤ ◦ <) ⊆ (<) for Ord is equivalent to LEM (cf. Taylor).

15

Abstract setting

What do Cnf, Brw, Ord have to do with each other?

Why are they “types of ordinals”?

Assume we have a set A with relations <,≤ such that:

I < is transitive and irreflexive;
I ≤ is transitive, reflexive, and antisymmetric;
I (<) ⊆ (≤), i.e. x < y → x ≤ y;
I (< ◦ ≤) ⊆ (<).

Note: (≤ ◦ <) ⊆ (<) for Ord is equivalent to LEM (cf. Taylor).

15

Abstract setting

What do Cnf, Brw, Ord have to do with each other?

Why are they “types of ordinals”?

Assume we have a set A with relations <,≤ such that:

I < is transitive and irreflexive;
I ≤ is transitive, reflexive, and antisymmetric;
I (<) ⊆ (≤), i.e. x < y → x ≤ y;
I (< ◦ ≤) ⊆ (<), i.e. x < y → y ≤ z → x < z.

Note: (≤ ◦ <) ⊆ (<) for Ord is equivalent to LEM (cf. Taylor).

15

Abstract setting

What do Cnf, Brw, Ord have to do with each other?

Why are they “types of ordinals”?

Assume we have a set A with relations <,≤ such that:

I < is transitive and irreflexive;
I ≤ is transitive, reflexive, and antisymmetric;
I (<) ⊆ (≤), i.e. x < y → x ≤ y;
I (< ◦ ≤) ⊆ (<), i.e. x < y → y ≤ z → x < z.

Note: (≤ ◦ <) ⊆ (<) for Ord is equivalent to LEM (cf. Taylor).

15

Abstract setting: zero, successor, limit classification

a : A is zero if ∀b.a ≤ b. a is a successor of b if
a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)

16

Abstract setting: zero, successor, limit classification
a : A is zero if ∀b.a ≤ b.

a is a successor of b if
a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)

16

Abstract setting: zero, successor, limit classification
a : A is zero if ∀b.a ≤ b. a is a successor of b if

a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)

16

Abstract setting: zero, successor, limit classification
a : A is zero if ∀b.a ≤ b. a is a successor of b if

a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)

16

Abstract setting: zero, successor, limit classification
a : A is zero if ∀b.a ≤ b. a is a successor of b if

a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)

16

Abstract setting: zero, successor, limit classification
a : A is zero if ∀b.a ≤ b. a is a successor of b if

a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.

I Corollary: “Classifiability” induction implies classification. (Conversely
classification + wellfounded induction implies classifiability induction.)

16

Abstract setting: zero, successor, limit classification
a : A is zero if ∀b.a ≤ b. a is a successor of b if

a > b and ∀x > b. x ≥ a.

The successor is strong if
∀x < a.x ≤ b.

a is a supremum of
f : N→ A if
∀i.fi ≤ a and
(∀i.fi ≤ x)→ a ≤ x.

a is a limit if f increasing.

“Concrete” results:
I Cnf, Brw, Ord uniquely have zero and strong successor.
I Brw, Ord uniquely have limits; Cnf does not.
I For Cnf, Brw, we can decide in which case we are (“classification”); for Ord,

this would imply LEM.

“Abstract” result:
I is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.
I Corollary: “Classifiability” induction implies classification. (Conversely

classification + wellfounded induction implies classifiability induction.) 16

Abstract arithmetic: addition

(A,<,≤) has addition if there is a function + : A→ A→ A such that:

is-zero(a)→ c+ a = c

a is-suc-of b→ d is-suc-of (c+ b)→ c+ a = d

a is-lim-of f → b is-sup-of (λi.c+ fi)→ c+ a = b

(A,<,≤) has unique addition if there is exactly one function with these
properties.

Concrete results: Cnf and Brw have unique addition. Ord has addition.

17

Abstract arithmetic: addition

(A,<,≤) has addition if there is a function + : A→ A→ A such that:

is-zero(a)→ c+ a = c

a is-suc-of b→ d is-suc-of (c+ b)→ c+ a = d

a is-lim-of f → b is-sup-of (λi.c+ fi)→ c+ a = b

(A,<,≤) has unique addition if there is exactly one function with these
properties.

Concrete results: Cnf and Brw have unique addition. Ord has addition.

17

Abstract arithmetic: addition

(A,<,≤) has addition if there is a function + : A→ A→ A such that:

is-zero(a)→ c+ a = c

a is-suc-of b→ d is-suc-of (c+ b)→ c+ a = d

a is-lim-of f → b is-sup-of (λi.c+ fi)→ c+ a = b

(A,<,≤) has unique addition if there is exactly one function with these
properties.

Concrete results: Cnf and Brw have unique addition. Ord has addition.

17

Addition for Cantor Normal Forms

Standard definition:
0 + b = b
a + 0 = a
(ω^ a + c) + (ω^ b + d) with <-tri a b
... | inl a<b = ω^ b + d
... | inr a≥b = ω^ a + (c + ω^ b + d)

Followed by proofs that + preserves isCNF.

Perhaps less standard: to prove correctness, need to define subtraction.

18

Addition for Cantor Normal Forms

Standard definition:
0 + b = b
a + 0 = a
(ω^ a + c) + (ω^ b + d) with <-tri a b
... | inl a<b = ω^ b + d
... | inr a≥b = ω^ a + (c + ω^ b + d)

Followed by proofs that + preserves isCNF.

Perhaps less standard: to prove correctness, need to define subtraction.

18

Addition for Cantor Normal Forms

Standard definition:
0 + b = b
a + 0 = a
(ω^ a + c) + (ω^ b + d) with <-tri a b
... | inl a<b = ω^ b + d
... | inr a≥b = ω^ a + (c + ω^ b + d)

Followed by proofs that + preserves isCNF.

Perhaps less standard: to prove correctness, need to define subtraction.

18

Abstract arithmetic: multiplication

Assume that (A,<,≤) has addition.

(A,<,≤) has multiplication if we have · : A→ A→ A such that:

is-zero(a)→ c · a = a

a is-suc-of b→ c · a = c · b+ c

a is-lim-of f → b is-sup-of (λi.c · fi)→ c · a = b

(A,<,≤) has unique multiplication if it has unique addition and there is exactly
one function with the above properties.

Concrete results: Cnf and Brw have unique multiplication. Ord has
multiplication.

19

Abstract arithmetic: multiplication

Assume that (A,<,≤) has addition.

(A,<,≤) has multiplication if we have · : A→ A→ A such that:

is-zero(a)→ c · a = a

a is-suc-of b→ c · a = c · b+ c

a is-lim-of f → b is-sup-of (λi.c · fi)→ c · a = b

(A,<,≤) has unique multiplication if it has unique addition and there is exactly
one function with the above properties.

Concrete results: Cnf and Brw have unique multiplication. Ord has
multiplication.

19

Abstract arithmetic: multiplication

Assume that (A,<,≤) has addition.

(A,<,≤) has multiplication if we have · : A→ A→ A such that:

is-zero(a)→ c · a = a

a is-suc-of b→ c · a = c · b+ c

a is-lim-of f → b is-sup-of (λi.c · fi)→ c · a = b

(A,<,≤) has unique multiplication if it has unique addition and there is exactly
one function with the above properties.

Concrete results: Cnf and Brw have unique multiplication. Ord has
multiplication.

19

Multiplication for Brouwer trees

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f) = limit (λi. x · fi)

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

20

Multiplication for Brouwer trees

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f) = limit (λi. x · fi)

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

20

Multiplication for Brouwer trees

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f) = limit (λi. x · fi)

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

20

Multiplication for Brouwer trees

Seemingly straightforward definition:

x · zero = zero
x · (succ y) = x · y + x

x · (limit f {incr-f})with decZerox
... | yes x≡0 = zero
... | no x6≡0 = limit (λi. x · fi) {x·-increasing x 6≡0 incr-f}

But! λi. zero · fi is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

20

Abstract arithmetic: exponentation

Assume that (A,<,≤) has addition and multiplication.

A has exponentation with base c if there is exp(c,−) : A→ A such that:

is-zero(b)→ a is-suc-of b→ exp(c, b) = a

a is-suc-of b→ exp(c, a) = exp(c, b) · c
a is-lim-of f → ¬is-zero(c)→ b is-sup-of (exp(c, fi))→ exp(c, a) = b

a is-lim-of f → is-zero(c)→ exp(c, a) = c

A has unique exponentation with base c if it has unique addition and
multiplication, and if exp(c,−) is unique.

Concrete results: Brw and Cnf and have unique exponentation (with base ω).

21

Abstract arithmetic: exponentation

Assume that (A,<,≤) has addition and multiplication.

A has exponentation with base c if there is exp(c,−) : A→ A such that:

is-zero(b)→ a is-suc-of b→ exp(c, b) = a

a is-suc-of b→ exp(c, a) = exp(c, b) · c
a is-lim-of f → ¬is-zero(c)→ b is-sup-of (exp(c, fi))→ exp(c, a) = b

a is-lim-of f → is-zero(c)→ exp(c, a) = c

A has unique exponentation with base c if it has unique addition and
multiplication, and if exp(c,−) is unique.

Concrete results: Brw and Cnf and have unique exponentation (with base ω).

21

Abstract arithmetic: exponentation

Assume that (A,<,≤) has addition and multiplication.

A has exponentation with base c if there is exp(c,−) : A→ A such that:

is-zero(b)→ a is-suc-of b→ exp(c, b) = a

a is-suc-of b→ exp(c, a) = exp(c, b) · c
a is-lim-of f → ¬is-zero(c)→ b is-sup-of (exp(c, fi))→ exp(c, a) = b

a is-lim-of f → is-zero(c)→ exp(c, a) = c

A has unique exponentation with base c if it has unique addition and
multiplication, and if exp(c,−) is unique.

Concrete results: Brw and Cnf and have unique exponentation (with base ω).

21

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤

• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)

22

Connections between the notions

Cnf Brw Ord

“decidable” “partially
decidable” “undecidable”

CtoB

(ωa + b) 7→ ωCtoB(a) + CtoB(b)

• injective
• preserves and reflects <, ≤
• commutes with +, ·, ω−

• bounded (by ε0)

BtoO

A 7→ (ΣY : Brw)(Y < A)

• injective
• preserves <, ≤
• over-approximates +, ·:
BtoO(x+ y) ≥ BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation⇒ WLPO

• LEM⇒ BtoO is a simulation

• bounded (by Brw)
22

Summary
Constructively, different definitions of ordinals are useful for different purposes.

We have considered three different notions, ranging from “decidable” to
“undecidable” in general.

Future work:
I Other notions of ordinals (e.g. based on the Veblen Normal Form, or other

types of trees [Jervell 2006])?
I Can we make Brw being “partially decidable” precise using the notion of

semi-decidability? [Veltri 2017, Escardó and Knapp 2017]
More details:
I Connecting Constructive Notions of Ordinals in Homotopy Type Theory,

MFCS 2021 (arxiv:2104.02549)
I Cubical Agda formalisation:

bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/

23

https://arxiv.org/abs/2104.02549
https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/

Summary
Constructively, different definitions of ordinals are useful for different purposes.

We have considered three different notions, ranging from “decidable” to
“undecidable” in general.

Future work:
I Other notions of ordinals (e.g. based on the Veblen Normal Form, or other

types of trees [Jervell 2006])?
I Can we make Brw being “partially decidable” precise using the notion of

semi-decidability? [Veltri 2017, Escardó and Knapp 2017]

More details:
I Connecting Constructive Notions of Ordinals in Homotopy Type Theory,

MFCS 2021 (arxiv:2104.02549)
I Cubical Agda formalisation:

bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/

23

https://arxiv.org/abs/2104.02549
https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/

Summary
Constructively, different definitions of ordinals are useful for different purposes.

We have considered three different notions, ranging from “decidable” to
“undecidable” in general.

Future work:
I Other notions of ordinals (e.g. based on the Veblen Normal Form, or other

types of trees [Jervell 2006])?
I Can we make Brw being “partially decidable” precise using the notion of

semi-decidability? [Veltri 2017, Escardó and Knapp 2017]
More details:
I Connecting Constructive Notions of Ordinals in Homotopy Type Theory,

MFCS 2021 (arxiv:2104.02549)
I Cubical Agda formalisation:

bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/
23

https://arxiv.org/abs/2104.02549
https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/

Summary
Constructively, different definitions of ordinals are useful for different purposes.

We have considered three different notions, ranging from “decidable” to
“undecidable” in general.

Future work:
I Other notions of ordinals (e.g. based on the Veblen Normal Form, or other

types of trees [Jervell 2006])?
I Can we make Brw being “partially decidable” precise using the notion of

semi-decidability? [Veltri 2017, Escardó and Knapp 2017]
More details:
I Connecting Constructive Notions of Ordinals in Homotopy Type Theory,

MFCS 2021 (arxiv:2104.02549)
I Cubical Agda formalisation:

bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/
23

Thank you!

https://arxiv.org/abs/2104.02549
https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott/

References
In order of appearance

I Alan Turing. 1949. “Checking a Large Routine”. In Report of a Conference on High Speed Automatic Calculating Machines.
University Mathematical Laboratory, Cambridge, UK, 67–69.

I Gerhard Gentzen. 1936. “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Mathematische Annalen, 112: 493–565.
I Reuben Goodstein. 1944. “On the restricted ordinal theorem”, Journal of Symbolic Logic, 9(2): 33–41.
I Laurie Kirby and Jeff Paris. 1982. “Accessible Independence Results for Peano Arithmetic”. Bulletin of the London

Mathematical Society. 14(4): 285–293.
I Fredrik Nordvall Forsberg, Chuangjie Xu, and Neil Ghani. 2020. “Three equivalent ordinal notation systems in cubical Agda”.

In the 9th ACM SIGPLAN international conference on Certified Programs and Proofs, 172–185.
I Martín Escardó. Since 2010. “Compact ordinals, discrete ordinals and their relationships”. Available at

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.html.
I Paul Taylor. 1996. “Intuitionistic sets and ordinals”. Journal of Symbolic Logic, 61(3):705–744.
I Herman Ruge Jervell. 2006. “Constructing ordinals”. Philosophia Scientiæ. Travaux d’histoire et de philosophie des sciences CS

6: 5–20.
I Niccolò Veltri.2017. “A type-theoretical study of nontermination”. PhD thesis, Tallinn University of Technology.
I Martín Escardó, and Cory Knapp. 2017. “Partial elements and recursion via dominances in univalent type theory.”. In the 26th

EACSL Annual Conference on Computer Science Logic. 21:1–21:16.

24

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.html

	Introduction
	Three different notions of ordinals
	Cantor normal forms
	Brouwer trees
	Extensional wellfounded orders

	An abstract framework
	Connections between the notions
	References

