
Elimination Principles for Initial Dialgebras

Fredrik Nordvall Forsberg

Swansea University, UK
csfnf@swansea.ac.uk

TYPES 08/09/2011, Bergen

Joint work with Thorsten Altenkirch, Peter Morris, Anton Setzer

Question

How do we reason about N, declared by

data N : Set where

zero : N
suc : N→ N,

and similar data types?

Elegant answer (known since the 70’s at least)

Model N as the initial F -algebra, where F : Set→ Set is the functor
F (X) = 1 + X .

1

F -algebras

Let F : C→ C be a functor. Recall that an F -algebra is a pair (X , f)
where X ∈ C and f : F (X)→ X .

X carrier, f : F (X)→ X constructor of the data type.

Constructor for natural numbers: [zero, suc] : 1 + N→ N.

A morphism α : (X , f)→ (Y , g) between F -algebras is a morphism
α : X → Y such that

F (X)
f //

F (α)
��

X

α

��
F (Y) g

// Y

2

F -algebras

Let F : C→ C be a functor. Recall that an F -algebra is a pair (X , f)
where X ∈ C and f : F (X)→ X .

X carrier, f : F (X)→ X constructor of the data type.

Constructor for natural numbers: [zero, suc] : 1 + N→ N.

A morphism α : (X , f)→ (Y , g) between F -algebras is a morphism
α : X → Y such that

F (X)
f //

F (α)
��

X

α

��
F (Y) g

// Y

2

Question

How do we write functions N→ A for some other type A?

Answer

Use the initiality!

Give an element z : A which zero should be sent to.

Give a function s : A→ A, used for successors.

Combine into F -algebra [z , s] : 1 + A→ A and get function α : N→ A
such that

1 + N [zero, suc] //

id+α
��

N
α

��
1 + A

[z,s]
// A

3

Question

What if I want a dependent function (x : N)→ P(x)? I want something
like an induction (or elimination) principle

x : N ` P(x) : Set
stepzero : P(zero)

n : N, ñ : P(n) ` stepsuc(n, ñ) : P(suc(n))

elim(P, stepzero, stepsuc) : (x : N)→ P(x)

Clever answer (Hermida and Jacobs, Ghani et al., . . .)

That’s fine! Such a term can be defined for initial algebras. Main idea:

Make Σn :N.P(n) into an F -algebra.

Initiality gives function α : N→ Σn :N.P(n).

Prove that π0 ◦ α = id : N→ N using uniqueness.

Hence π1 ◦ α : (x : N)→ P(x) is desired eliminator.

4

Question

What if I want a dependent function (x : N)→ P(x)? I want something
like an induction (or elimination) principle

x : N ` P(x) : Set
stepzero : P(zero)

n : N, ñ : P(n) ` stepsuc(n, ñ) : P(suc(n))

elim(P, stepzero, stepsuc) : (x : N)→ P(x)

Clever answer (Hermida and Jacobs, Ghani et al., . . .)

That’s fine! Such a term can be defined for initial algebras. Main idea:

Make Σn :N.P(n) into an F -algebra.

Initiality gives function α : N→ Σn :N.P(n).

Prove that π0 ◦ α = id : N→ N using uniqueness.

Hence π1 ◦ α : (x : N)→ P(x) is desired eliminator.

4

Question

What if I want a dependent function (x : N)→ P(x)? I want something
like an induction (or elimination) principle

x : N ` P(x) : Set
stepzero : P(zero)

n : N, ñ : P(n) ` stepsuc(n, ñ) : P(suc(n))

elim(P, stepzero, stepsuc) : (x : N)→ P(x)

Clever answer (Hermida and Jacobs, Ghani et al., . . .)

That’s fine! Such a term can be defined for initial algebras. Main idea:

Make Σn :N.P(n) into an F -algebra.

Initiality gives function α : N→ Σn :N.P(n).

Prove that π0 ◦ α = id : N→ N using uniqueness.

Hence π1 ◦ α : (x : N)→ P(x) is desired eliminator.

4

Question

What if I want a dependent function (x : N)→ P(x)? I want something
like an induction (or elimination) principle

x : N ` P(x) : Set
stepzero : P(zero)

n : N, ñ : P(n) ` stepsuc(n, ñ) : P(suc(n))

elim(P, stepzero, stepsuc) : (x : N)→ P(x)

Clever answer (Hermida and Jacobs, Ghani et al., . . .)

That’s fine! Such a term can be defined for initial algebras. Main idea:

Make Σn :N.P(n) into an F -algebra.

Initiality gives function α : N→ Σn :N.P(n).

Prove that π0 ◦ α = id : N→ N using uniqueness.

Hence π1 ◦ α : (x : N)→ P(x) is desired eliminator.

4

Elimination rules for an arbitrary inductive data type

It might be worth pointing out the form of the elimination principle for an
arbitrary inductive type µF with constructor in : F (µF)→ µF :

x : µF ` P(x) : Set x : F (µF), x̃ : �F (P, x) ` step(x , x̃) : P(in(x))

elim(P, step) : (x : µF)→ P(x)

Here �F (P, x) is the “induction hypothesis” – the set of proofs that
P holds for the “pieces” of x .

Should satisfy a computation rule (omitted here).

5

Question

What if I have a more exotic data type, such as

1 an indexed inductive definition (such as lists of a certain lengths),

2 an inductive-recursive definition (such as a type-theoretic universe), or

3 an inductive-inductive definition (such as the well-formed syntax of
dependent type theory)?

Answer
1 and 2 fit into the framework (see recent work by Ghani et al., and

work by Dybjer and Setzer respectively) , but 3 seems not to.

We should generalise the framework so that also 3 is covered!

6

Side remark: inductive-inductive definitions
An inductive-inductive definition consists of a data type A : Set,
defined mutually with an A-indexed data type B : A→ Set.

Both defined inductively.

Constructors for A can refer to B and vice versa.

In addition, constructors for B can refer to constructors for A.

Main example (Dybjer, Danielsson, Chapman)

Well-formed syntax of dependent type theory.

Context : Set

Type : Context→ Set

...

Problem

Can no longer describe constructors by endofunctors.

7

Side remark: inductive-inductive definitions
An inductive-inductive definition consists of a data type A : Set,
defined mutually with an A-indexed data type B : A→ Set.

Both defined inductively.

Constructors for A can refer to B and vice versa.

In addition, constructors for B can refer to constructors for A.

Main example (Dybjer, Danielsson, Chapman)

Well-formed syntax of dependent type theory.

Context : Set

Type : Context→ Set

...

Problem

Can no longer describe constructors by endofunctors.
7

Generalisation

Describe the constructors by functors F : C→ D, not only C→ C.

This means that

f : F (X) X
∈ ∈
D C

is no longer type correct.

Let F ,G : C→ D and consider “constructors” f : F (X)→ G (X).

We will mostly be interested in the case when G is “almost” the identity,
such as e.g. a forgetful functor G : T -Alg→ C,

G (X , f) = X

G (α) = α .

8

Dialgebras

Such structures were called dialgebras by Hagino in his thesis:

Definition

Let F ,G : C→ D be functors. An (F ,G)-dialgebra (X, f) consists of
X ∈ C and f : F (X)→ G (X). A morphism between dialgebras (X , f) and
(Y , g) is a morphism α : X → Y in C such that

F (X)
f //

F (α)
��

G (X)

G(α)
��

F (Y) g
// G (Y)

Write Dialg(F ,G) for the category of (F ,G)-dialgebras.

Of course, G = id : C→ C gives ordinary F -algebras as a special case.

9

Elimination rules for dialgebras

Goal

Show that one can define an eliminator for every initial dialgebra.

First problem

What is an eliminator for a dialgebra?

To describe this, we require some extra structure from C and D, namely
that they are categories with families.

10

Categories with Families

Introduced by Dybjer as “an uncategorical categorical notion of model of
type theory”, with goal of being as close to the syntax as possible.

For us, an abstract notion of family of objects (property under
propositions-as-types), dependent functions and dependent pairs.

Definition (Category with families)

A category with families is given by

A category C – the category of contexts.

A functor F = (Ty,Tm) : Cop → Fam(Set) – to model types, terms

(and substitutions of both).

Extra structure to model the construction of contexts as lists of types.

11

Fam(Set)

Definition

The category Fam(Set) has

objects pairs (I ,X) where I is a set (the index set) and X : I → Set
is a function.

morphisms (I ,X)→ (J,Y) are pairs (f , g) where f : I → J and
g : (i : I)→ X (i)→ Y (f (i)) (i.e. a natural transformation
g : X → Y ◦ f).

Fam(Set) is equivalent to Set→.

12

Categories with families as models of type theory

Think of the base category C as a category of contexts (and context
substitutions).

The object part of the functor (Ty,Tm) : Cop → Fam(Set) maps a
context to family of terms indexed by types in that context.

That is: for each Γ ∈ C, we have a set of types Ty(Γ) in context Γ.

For each context Γ ∈ C and type σ ∈ Ty(Γ), we have a set of terms
Tm(Γ, σ) of type σ in context Γ.

The morphism part of the functor performs substitution in types and
terms. We write {·} for the action on both the index set and the
indexed family, ie. if f : ∆→ Γ, then

{f } : Ty(Γ)→ Ty(∆)

{f } : Tm(Γ, σ)→ Tm(∆, σ{f })

for every σ ∈ Ty(Γ).

Contravariant, because that is how substitution works.

13

Categories with families as models of type theory

Think of the base category C as a category of contexts (and context
substitutions).

The object part of the functor (Ty,Tm) : Cop → Fam(Set) maps a
context to family of terms indexed by types in that context.

That is: for each Γ ∈ C, we have a set of types Ty(Γ) in context Γ.

For each context Γ ∈ C and type σ ∈ Ty(Γ), we have a set of terms
Tm(Γ, σ) of type σ in context Γ.

The morphism part of the functor performs substitution in types and
terms. We write {·} for the action on both the index set and the
indexed family, ie. if f : ∆→ Γ, then

{f } : Ty(Γ)→ Ty(∆)

{f } : Tm(Γ, σ)→ Tm(∆, σ{f })

for every σ ∈ Ty(Γ).

Contravariant, because that is how substitution works.

13

Categories with families as models of type theory

Think of the base category C as a category of contexts (and context
substitutions).

The object part of the functor (Ty,Tm) : Cop → Fam(Set) maps a
context to family of terms indexed by types in that context.

That is: for each Γ ∈ C, we have a set of types Ty(Γ) in context Γ.

For each context Γ ∈ C and type σ ∈ Ty(Γ), we have a set of terms
Tm(Γ, σ) of type σ in context Γ.

The morphism part of the functor performs substitution in types and
terms. We write {·} for the action on both the index set and the
indexed family, ie. if f : ∆→ Γ, then

{f } : Ty(Γ)→ Ty(∆)

{f } : Tm(Γ, σ)→ Tm(∆, σ{f })

for every σ ∈ Ty(Γ).

Contravariant, because that is how substitution works.

13

Categories with families as models of type theory

Think of the base category C as a category of contexts (and context
substitutions).

The object part of the functor (Ty,Tm) : Cop → Fam(Set) maps a
context to family of terms indexed by types in that context.

That is: for each Γ ∈ C, we have a set of types Ty(Γ) in context Γ.

For each context Γ ∈ C and type σ ∈ Ty(Γ), we have a set of terms
Tm(Γ, σ) of type σ in context Γ.

The morphism part of the functor performs substitution in types and
terms. We write {·} for the action on both the index set and the
indexed family, ie. if f : ∆→ Γ, then

{f } : Ty(Γ)→ Ty(∆)

{f } : Tm(Γ, σ)→ Tm(∆, σ{f })

for every σ ∈ Ty(Γ).

Contravariant, because that is how substitution works.
13

Extra structure

C should have a terminal object (the empty context).

For each Γ ∈ C and σ ∈ Ty(Γ), there is

an object Γ · σ (the context comprehension),

a morphism pσ : Γ · σ → Γ (the first projection),

a term vσ ∈ Tm(Γ · σ, σ{p}) (the second projection),

satisfying a universal property (omitted here).

Corresponds to extending a context Γ with a fresh variable x of type
σ to form the context Γ, x : σ.

Fact

There is a sound interpretation of (the structural rules of) type theory in
any Category with Families.

14

Extra structure

C should have a terminal object (the empty context).

For each Γ ∈ C and σ ∈ Ty(Γ), there is

an object Γ · σ (the context comprehension),

a morphism pσ : Γ · σ → Γ (the first projection),

a term vσ ∈ Tm(Γ · σ, σ{p}) (the second projection),

satisfying a universal property (omitted here).

Corresponds to extending a context Γ with a fresh variable x of type
σ to form the context Γ, x : σ.

Fact

There is a sound interpretation of (the structural rules of) type theory in
any Category with Families.

14

Extra structure

C should have a terminal object (the empty context).

For each Γ ∈ C and σ ∈ Ty(Γ), there is

an object Γ · σ (the context comprehension),

a morphism pσ : Γ · σ → Γ (the first projection),

a term vσ ∈ Tm(Γ · σ, σ{p}) (the second projection),

satisfying a universal property (omitted here).

Corresponds to extending a context Γ with a fresh variable x of type
σ to form the context Γ, x : σ.

Fact

There is a sound interpretation of (the structural rules of) type theory in
any Category with Families.

14

Extra structure

C should have a terminal object (the empty context).

For each Γ ∈ C and σ ∈ Ty(Γ), there is

an object Γ · σ (the context comprehension),

a morphism pσ : Γ · σ → Γ (the first projection),

a term vσ ∈ Tm(Γ · σ, σ{p}) (the second projection),

satisfying a universal property (omitted here).

Corresponds to extending a context Γ with a fresh variable x of type
σ to form the context Γ, x : σ.

Fact

There is a sound interpretation of (the structural rules of) type theory in
any Category with Families.

14

Extra structure

C should have a terminal object (the empty context).

For each Γ ∈ C and σ ∈ Ty(Γ), there is

an object Γ · σ (the context comprehension),

a morphism pσ : Γ · σ → Γ (the first projection),

a term vσ ∈ Tm(Γ · σ, σ{p}) (the second projection),

satisfying a universal property (omitted here).

Corresponds to extending a context Γ with a fresh variable x of type
σ to form the context Γ, x : σ.

Fact

There is a sound interpretation of (the structural rules of) type theory in
any Category with Families.

14

Extra structure

C should have a terminal object (the empty context).

For each Γ ∈ C and σ ∈ Ty(Γ), there is

an object Γ · σ (the context comprehension),

a morphism pσ : Γ · σ → Γ (the first projection),

a term vσ ∈ Tm(Γ · σ, σ{p}) (the second projection),

satisfying a universal property (omitted here).

Corresponds to extending a context Γ with a fresh variable x of type
σ to form the context Γ, x : σ.

Fact

There is a sound interpretation of (the structural rules of) type theory in
any Category with Families.

14

Set as a category with families

Ty(Γ) = {A | A : Γ→ Set is a Γ-indexed family of (small) sets}
A{f } = A ◦ f ∈ Ty(∆) (f : ∆→ Γ)

Tm(Γ,A) = (x : Γ)→ A(x)

a{f } = a ◦ f ∈ Tm(∆,A{f }) (f : ∆→ Γ)

Γ · A = (Σx : Γ)A(x)

pA(x , y) = x

vA(x , y) = y

15

Set as a category with families

Ty(Γ) = {A | A : Γ→ Set is a Γ-indexed family of (small) sets}
A{f } = A ◦ f ∈ Ty(∆) (f : ∆→ Γ)

Tm(Γ,A) = (x : Γ)→ A(x)

a{f } = a ◦ f ∈ Tm(∆,A{f }) (f : ∆→ Γ)

Γ · A = (Σx : Γ)A(x)

pA(x , y) = x

vA(x , y) = y

15

Categories with families as abstract dependencies

Think of

Ty(Γ) as properties of Γ,

Tm(Γ, σ) as a dependent function space,

Γ · σ as a dependent pair (with projections p and v).

16

Elimination rules for F -algebras in arbitrary CwFs

With this in mind, let us look at the ordinary elimination rule again:

P : µF → Set step : (x : F (µF))(x̃ : �F (P, x))→ P(in(x))

elim(P, step) : (x : µF)→ P(x)

Generalising to an arbitrary category with families, we get

P ∈ Ty(µF) step ∈ Tm(F (µF) ·�F (P),P{in ◦ p})
elim(P, step) ∈ Tm(µF ,P)

This is still only for an F -algebra, not for dialgebras!

Problem

What is �F ?

17

What is �F ?

�F should lift properties on X to properties on F (X): If P : X → Set,
then �F (P) : F (X)→ Set.

For ordinary F -algebras, there is an isomorphism

ϕF : F ((Σx :X)P(x))→ (Σx :F (X))�F (P, x)

with π0 ◦ ϕF = F (π0).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

18

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P : X → Set,
then �F (P) : F (X)→ Set.

For ordinary F -algebras, there is an isomorphism

ϕF : F ((Σx :X)P(x))→ (Σx :F (X))�F (P, x)

with π0 ◦ ϕF = F (π0).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) : F (X)→ Set.

For ordinary F -algebras, there is an isomorphism

ϕF : F ((Σx :X)P(x))→ (Σx :F (X))�F (P, x)

with π0 ◦ ϕF = F (π0).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) ∈ TyD(F (X)).

For ordinary F -algebras, there is an isomorphism

ϕF : F ((Σx :X)P(x))→ (Σx :F (X))�F (P, x)

with π0 ◦ ϕF = F (π0).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) ∈ TyD(F (X)).

There should be an isomorphism

ϕF : F (X · P)→ (Σx :F (X))�F (P, x)

with π0 ◦ ϕF = F (π0).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) ∈ TyD(F (X)).

There should be an isomorphism

ϕF : F (X · P)→ F (X) ·�F (P)

with π0 ◦ ϕF = F (π0).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) ∈ TyD(F (X)).

There should be an isomorphism

ϕF : F (X · P)→ F (X) ·�F (P)

with p�F (P) ◦ ϕF = F (pP).

F ((Σx :X)P(x))
ϕF //

F (π0)
��

(Σx :F (X))�F (P, x)

π0
uu

F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D

�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) ∈ TyD(F (X)).

There should be an isomorphism

ϕF : F (X · P)→ F (X) ·�F (P)

with p�F (P) ◦ ϕF = F (pP).

F (X · P)
ϕF //

F (pP)
��

F (X) ·�F (P)

p�F (P)ww
F (X)

In fact, this determines �F up to isomorphism.

19

What �F is for F : C→ D
�F should lift properties on X to properties on F (X): If P ∈ TyC(X),
then �F (P) ∈ TyD(F (X)).

There should be an isomorphism

ϕF : F (X · P)→ F (X) ·�F (P)

with p�F (P) ◦ ϕF = F (pP).

F (X · P)
ϕF //

F (pP)
��

F (X) ·�F (P)

p�F (P)ww
F (X)

This determines �F up to isomorphism.

�F can also be explicitly constructed if the CwF D supports sigma types,
extensional identity types and “constant families”.

19

Elimination rules for (F ,G)-dialgebras

The elimination rule for an (F ,G)-dialgebra is

P ∈ Ty(X) step ∈ Tm(F (X) ·�F (P),�G (P){in ◦ p})
elim(P, step) ∈ Tm(G (X),�G (P))

If G is “almost” the identity, then so is �G .

(This justifies the occurrence of �G (P) where perhaps P was expected.)

Must be this way to make computation rules of the form

elim(P, step){in} = step{. . .}

typecheck.

20

Initial dialgebras have eliminators

The proof that an initial dialgebra (X , in) have an eliminator can now be
lifted from the proof for algebras in Set:

Make Σn :X .P(n) into an F -algebra.

Initiality gives function α : X → Σn :X .P(n).

Prove that π0 ◦ α = id : X → X using uniqueness.

Hence π1 ◦ α : (x : X)→ P(x) is desired eliminator.

Verify computation rules.

Instantiate the proof in Set with G = id, and the original proof falls out!

21

Initial dialgebras have eliminators

The proof that an initial dialgebra (X , in) have an eliminator can now be
lifted from the proof for algebras in Set:

Make X · P into an (F ,G)-dialgebra.

Initiality gives function α : X → Σn :X .P(n).

Prove that π0 ◦ α = id : X → X using uniqueness.

Hence π1 ◦ α : (x : X)→ P(x) is desired eliminator.

Verify computation rules.

Instantiate the proof in Set with G = id, and the original proof falls out!

21

Initial dialgebras have eliminators

The proof that an initial dialgebra (X , in) have an eliminator can now be
lifted from the proof for algebras in Set:

Make X · P into an (F ,G)-dialgebra.

Initiality gives function α : X → X · P.

Prove that π0 ◦ α = id : X → X using uniqueness.

Hence π1 ◦ α : (x : X)→ P(x) is desired eliminator.

Verify computation rules.

Instantiate the proof in Set with G = id, and the original proof falls out!

21

Initial dialgebras have eliminators

The proof that an initial dialgebra (X , in) have an eliminator can now be
lifted from the proof for algebras in Set:

Make X · P into an (F ,G)-dialgebra.

Initiality gives function α : X → X · P.

Prove that p ◦ α = id : X → X using uniqueness.

Hence π1 ◦ α : (x : X)→ P(x) is desired eliminator.

Verify computation rules.

Instantiate the proof in Set with G = id, and the original proof falls out!

21

Initial dialgebras have eliminators

The proof that an initial dialgebra (X , in) have an eliminator can now be
lifted from the proof for algebras in Set:

Make X · P into an (F ,G)-dialgebra.

Initiality gives function α : X → X · P.

Prove that p ◦ α = id : X → X using uniqueness.

Hence v{ϕG ◦ G (α)} : (x : X)→ P(x) is desired eliminator.

Verify computation rules.

Instantiate the proof in Set with G = id, and the original proof falls out!

21

Initial dialgebras have eliminators

The proof that an initial dialgebra (X , in) have an eliminator can now be
lifted from the proof for algebras in Set:

Make X · P into an (F ,G)-dialgebra.

Initiality gives function α : X → X · P.

Prove that p ◦ α = id : X → X using uniqueness.

Hence v{ϕG ◦ G (α)} ∈ Tm(G (X),�G (P)) is desired eliminator.

Verify computation rules.

Instantiate the proof in Set with G = id, and the original proof falls out!

21

Some examples

Induction principle C D G

Ordinary induction Set – id

Indexed induction SetI – id
Induction-recursion Type/D – id

induction-induction? Dialg(F0,U) Fam(Set) V

? U : Fam(Set) → Set and V : Dialg(F0,U) → Fam(Set) are forgetful functors.

[U(I ,X) = I V (X , f) = X]

22

Summary

Dialgebras instead of algebras (to include induction-induction).

Generic elimination principle for any functors F ,G : C→ D.

Based on C and D being categories with families.

Initial dialgebras have eliminators.

23

Summary

Dialgebras instead of algebras (to include induction-induction).

Generic elimination principle for any functors F ,G : C→ D.

Based on C and D being categories with families.

Initial dialgebras have eliminators.

23

Thanks!

	Motivation
	Dialgebras
	Categories with Families
	Generic elimination rules
	Initial dialgebras have eliminators
	Concluding remarks

