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What is economic game theory?

The theory of interacting “rational” agents.

Players make observations and then make choices.

Choices of all players determine payoffs.

Players want to maximise their payoff.

Fundamental concept: equilibrium strategies.
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Example: penalty shootout

Choices Σ = {L,R}2.

Payoffs u : Σ→ R2 with u(a, b) =

{
( 1,−1) if a 6= b

(−1, 1) if a = b

No (deterministic) equilibria.
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The problem of scaling
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The problem of scaling
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Building games compositionally

Goal: Instead of making sense of large games post facto, construct
them from smaller, already understood games.

Trade-offs needed, because of emergent behaviour.

Methods: Category theory (for compositionality), type theory (for
precision; this work).
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The open games framework



Open games [Hedges 2016]
From the outside

X

S

Y

R

X ∈ Set state of the game Y ∈ Set moves of the game
S ∈ Set coutility type R ∈ Set utility type
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Open games
Inside the box

X

S

Y

R

Definition
An open game G = (ΣG ,PG ,CG ,EG) : (X ,S)→ (Y ,R) consists of:

I a set ΣG of strategy profiles,

I a play function PG : X → ΣG → Y ,

I a coutility function CG : X → ΣG → R → S , and

I a equilibrium function EG : X → (Y → R)→P(ΣG).
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Example: penalty shootout as an open game

1

R2

{L,R}2

R2

{L,R}2

P(x , σ) = σ

C (x , σ, r) = r

(a, b) ∈ E (x , k) iff π1(k(a, b)) ≥ π1(k(ā, b)) and
π2(k(a, b)) ≥ π2(k(a, b̄))
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Parallel composition of open games

XS

YR

Σ

X’

Y’R’

S’

Σ′

Proposition
The penalty shootout open game can be built as P1 ⊗ P2, where

P1,P2 : (1,R)→ ({L,R},R)

with ΣPi
= {L,R}, and a ∈ EPi

(x , k) iff a ∈ arg max
x∈Σ
{k(x)}.
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Sequential composition
XS

YR

YR

Σ

T Z

Σ′

◦ =

XS

ZT

Σ× Σ′
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Symmetric monoidal structure

Theorem ([Ghani, Hedges, Winschel, Zahn 2018])

(i) The collection of pairs of sets, with open games
G : (X ,S)→ (Y ,R) as morphisms, forms a symmetric
monoidal category Game.

(ii) There is a identity-on-objects functor

ι : Set× Setop → Game

with

Pι(f ,g)(x , σ) = f (x) Cι(f ,g)(x , σ, r) = g(r).
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More structure?

Can we construct e.g. coproducts of games? (For a natural notion
of morphisms between games.)

Game-theoretic motivation: Games with external choice, e.g. later
rounds depend on choices in previous rounds.
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Coproduct construction attempts
First attempt:

X + X ′

S × S ′

Y + Y ′

R × R ′

Σ + Σ′

PG+G′ : (X + X ′)× (Σ + Σ′)→ (Y + Y ′)

PG+G′(inl x) (inlσ) = {?0 : Y + Y ′}

PG+G′(inl x) (inr σ′) = {?1 : Y + Y ′}
...

But: To define injections G → G + G′ we need a strategy
component ΣG → ΣG × Σ′G . �
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Coproduct construction attempts
First Second attempt:
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Analysis

We kept both strategies around because we could not describe the
situations when we needed one but not the other.

(This is reminiscent of implementing A + B as A× B , and
supplying a dummy value as needed.)

But. . . what if we could be more precise about which strategy we
need?
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Open games in type theory



Introducing dependency

Old definition:

X : Set
S : Set
Y : Set
R : Set
Σ : Set
P : X → Σ→ Y

C : X → Σ→ R → S

E : X → (Y → R)→P(Σ)

Note: (X ,S) is a container [Abbott, Altenkirch, Ghani 2005].

14



Introducing dependency

Dependently typed definition:
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Σ : X → Set
P : (x : X )→ Σ x → Y

C : (x : X )→ (σ : Σ x)→ R (P x σ)→ S x

E : (x : X )→ ((y : Y )→ R y)→P(Σ x)

Note: (X ,S) is a container [Abbott, Altenkirch, Ghani 2005].

14



Introducing dependency

Dependently typed definition:

X : Set
S : X → Set
Y : Set
R : Y → Set
Σ : X → Set
P : (x : X )→ Σ x → Y

C : (x : X )→ (σ : Σ x)→ R (P x σ)→ S x

E : (x : X )→ ((y : Y )→ R y)→P(Σ x)

Note: (X ,S) is a container [Abbott, Altenkirch, Ghani 2005].

14



Dependently typed open games

Let (X , S) and (Y ,R) be containers.

Definition
A dependently typed open game G : (X , S)→ (Y ,R) consists of:
I a family of sets ΣG : X → Set,

I a play function PG :
(
x : X

)
→ ΣG(x)→ Y ,

I a coutility function
CG :

(
x : X

)
→
(
σ : ΣG

)
→ R(PG x σ)→ S(x), and

I a equilibrium function
EG :

(
x : X

)
→ (

(
y : Y

)
→ R(y))→P(ΣG(x)).

Observation: If S , R , ΣG are constant families, this reduces to an
ordinary open game.
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Parallel composition of dependently typed games

X × X ′

(x , x ′) 7→
S x × S ′ x ′

Y × Y ′

(y , y ′) 7→
R y × R ′ y ′

(x , x ′) 7→
ΣG(x)× ΣG′(x

′)
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Sequential composition of dependently typed games

X

S

Y ′

R ′

x 7→ (ΣG(x))× (∀y .ΣG′(y))

Note: “Alternative” definition

ΣG′◦G x = (σ : ΣG(x))× (ΣG′ (PG x σ))

does not work.
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Uniform function space ∀y .B(y)

Intuitively, consists of functions that make no computational use of
their argument. (cf. “ghost variables” in Hoare logic).

Modelled by intersection in PER/realizability models.

In Agda: run-time irrelevance @0 + Frobenius axiom

∀x .(B × P(x)) ∼= B × ∀x .P(x)
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Symmetric monoidal structure

Theorem
(i) The collection of containers, with open games
G : (X ,S)→ (Y ,R) as morphisms, forms a symmetric
monoidal category DGame.

(ii) There is a identity-on-objects functor

ι : Cont→ DGame
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Coproducts of dependently typed games

X + X ′

[S , S ′]

Y + Y ′

[R,R ′]

[Σ,Σ′]

PG+G′ (inl x , σ) = inl (PG(x , σ))

PG+G′ (inr x ′, σ′) = inr (PG′(x
′, σ′))

Also has the right universal property.
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Summary



Compositional Game Theory in Type Theory

I Open games as a compositional model of game theory.

I Dependently typed open games for more precision in the
model, and a mathematically nicer category of games (e.g.
coproducts of games).
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